
A distributed, value-oriented XML Store

Master’s Thesis
IT University of Copenhagen

Tine Thorn
Anders Baumann
Mikkel Fennestad

Supervisor:
Peter Sestoft

August 2002

Abstract

The XML Store is a distributed, value-oriented storage facility for storing XML
documents. This thesis demonstrates that it is possible to design and implement
an XML Store based on a peer-to-peer distributed file system. The distributed file
system is based on Chord, a routing and location protocol developed at MIT, and
provides a distributed hash table for storage of data. The Chord protocol is highly
scalable as it looks up data in time logarithmic in the number of servers and requires
only logarithmic space for routing information at each node.

The term value-oriented denotes a style of programming where all data are
considered immutable. When storing XML documents we employ a storage stra-
tegy, splitting XML documents up according to their inherent tree structure. Each
subdocument is considered a value and stored separately in the distributed file sys-
tem. This storage strategy offers many advantages over conventional text based
technologies such as SAX and DOM, the most important being the possibility to
obtain sharing of identical subdocuments.

We present a simple and flexible value-oriented API for representing and ma-
nipulating XML documents. It takes advantage of sharing and uses the proposed
storage strategy to handle manipulation of XML documents without having to read
and parse the entire document into memory. The value-oriented approach makes it
easier to maintain several document versions and simplifies usually complex prob-
lems in distributed systems, such as transaction handling, caching- and replication
management.

The implemented prototype has been subjected to extensive performance ex-
periments. The experiments demonstrate the superiority of the value-oriented ap-
proach when storing modifications of documents. The experiments show that the
time taken to store a document is mostly dependant on the number of nodes in
a document, and to a lesser degree the size of the nodes. The experiments fur-
thermore reveal that the XML Store prototype does not perform well when storing
nodes. This is probably due to the somewhat rough and unoptimised implementa-
tion of network communication. With a better implementation it is plausible that
the XML Store can be much more efficient, since related systems based on the
Chord protocol achieve performance comparable to FTP.

Contents

1 Introduction 6
1.1 Motivation . 6
1.2 Problem statement . 8
1.3 Desiderata . 9
1.4 Contributions . 10
1.5 Delimitations . 11
1.6 Thesis overview . 11

I Background 13

2 Distributed systems 14
2.1 Characteristics of distributed systems 14
2.2 Challenges designing distributed systems 15
2.3 Peer-to-peer systems . 18

3 Value-oriented programming 21
3.1 Value references and sharing . 22
3.2 Value-oriented trees . 23

4 XML 25
4.1 What is XML? . 25

4.1.1 Well-formed XML . 26
4.1.2 Valid XML . 27

4.2 Minimal XML . 27
4.3 XML technologies . 28

4.3.1 SAX and DOM . 29
4.3.2 XPath . 30

5 Related work 33
5.1 Peer-to-peer systems . 33

5.1.1 Decentralised routing and location 34
5.1.2 Properties and features of related peer-to-peer systems . . 37

5.2 Other related technologies . 39

1

CONTENTS

5.2.1 XML databases . 39
5.2.2 Peer-to-peer framework 40

II Analysis & design 41

6 XML Store overview 42

7 API design 45
7.1 Class structure . 46
7.2 Methods for manipulation of child nodes 46
7.3 Our adaption of XPath . 48
7.4 Utility methods for manipulation of XML documents 48

7.4.1 Examples of uses of the API 49
7.5 Representing child lists . 49

7.5.1 Array solution . 51
7.5.2 Binary tree solution . 51

7.6 Summary . 54

8 The Chord protocol 55
8.1 Chord: A distributed routing and location protocol 55

8.1.1 Consistent hashing . 56
8.1.2 Mapping keys to nodes 57
8.1.3 Operations in Chord . 57
8.1.4 Properties of Chord operations 62
8.1.5 Concurrency . 65

8.2 Caching . 65
8.3 Load balancing . 67
8.4 Fault tolerance . 68
8.5 Server selection . 69
8.6 Summary . 70

9 Value-oriented storage 71
9.1 XML Storage and Distributed Storage layers 71
9.2 Value references . 72

9.2.1 Collisions . 72
9.2.2 Preventing forging . 73

9.3 Storage strategy . 74
9.3.1 Sharing . 74
9.3.2 Lazy loading . 75
9.3.3 Evaluation of storage strategy 76

9.4 Disk handling . 77
9.4.1 Each value in a separate file 77
9.4.2 Log-structured disk . 78

2

CONTENTS

9.4.3 Our choice of implementation 78

10 Symbolic names 79
10.1 Names and name service . 79
10.2 The XML Store Directory . 80
10.3 Concurrency problems . 81
10.4 A distributed name service . 82

11 Network communication 84
11.1 Description of RMI . 84
11.2 Synchronous message passing 85
11.3 RMI invocation semantics . 86
11.4 Asynchronous message passing 86
11.5 Our choice of implementation 87

12 Security issues 88
12.1 Tampering . 88
12.2 Leakage . 89

12.2.1 Content Hash Encryption 89
12.3 Vandalism . 90

13 Summary of the analysis 91

III Implementation & evaluation 94

14 Implementation 95
14.1 The XML Store Layers . 95

14.1.1 The XML Layer . 96
14.1.2 The XML Storage layer 97
14.1.3 The Distributed Storage layer 98
14.1.4 Storage layer . 99
14.1.5 Name service . 99

14.2 XmlStoreServer . 101
14.3 Network communication . 101
14.4 Building applications using the XML Store 103

15 Test 106
15.1 Systematic test . 106
15.2 Automatic test . 107
15.3 Test of the XML Store system 107

3

CONTENTS

16 Experimental results 108
16.1 Performance of storage and retrieval 108

16.1.1 Influence of number of nodes 109
16.1.2 Influence of the size of character data 110
16.1.3 Number of nodes vs. size of character data 110
16.1.4 Network communication 110
16.1.5 Asynchronous storage of nodes 112

16.2 Scalability . 112
16.3 Modification of an XML document 113
16.4 Representation of child lists . 114

17 E-mail application 116
17.1 Description of the e-mail system 116
17.2 Evaluation of API . 120
17.3 Evaluation of suitability . 121

18 Conclusion 123

19 Future work 126

4

Preface

This Master’s Thesis has been written in the period from February to August 2002
at the IT University of Copenhagen under supervision of associate professor Peter
Sestoft.

The thesis concerns the design and implementation of a distributed, value-
oriented storage facility for XML documents. This work relates to existing re-
sults on peer-to-peer storage facilities. However, the idea of implementing a dis-
tributed storage facility specifically designed for storing XML documents in a
value-oriented way is novel.

The thesis has been written in British English. Text that refers to code or code
related items are written inverbatim font. References are cited by index in the
bibliography, e.g. [1]. If a reference appear after a full stop, it means that this
reference applies to the preceding paragraph.

The appendix referred to throughout the thesis can be found in a separate docu-
ment. Source code of implementations can be found in the appendix. Source code
is also available for download at the web site:
http://www.it-c.dk/people/fenne/xmlstore/src.zip

Thesis handed in August 1st, 2002.

Acknowledgements

A number of people directly or indirectly influenced this work and we are grateful
for their contributions.

We would like to thank our supervisor Peter Sestoft for skillful and patient
guidance, support and advice during the course of writing this thesis. We would
also like to thank associate professor Fritz Henglein for providing the initial impe-
tus inspiration for “Plan 10”, and the “XML Store”.

Furthermore, we acknowledge Jesper T. Pedersen and Kasper B. Pedersen for
fruitful discussions in the area of value-oriented programming and XML storage.
A special thanks to Jakob Bendsen and Rasmus Lund for insight, diversion and
support, and to Jacob Fennestad for design and creation of the frontpage.

5

Chapter 1

Introduction

This chapter motivates our interest in distributed (peer-to-peer) systems for storing
XML documents in a value-oriented way. Furthermore, we present the main pur-
pose of the thesis, some desiderata of the XML Store system and delimitations of
the thesis. Finally, we give an overview of the report.

1.1 Motivation

Distributed Systems

Not long ago computers were a scarce resource, but in recent years the cost of
processors, memory, storage space and fast network connections have fallen dra-
matically. Networked computer systems are rapidly growing in importance as the
medium of choice for the storage and exchange of information and data.

The growth in storage, bandwidth, and computational resources has fundamen-
tally changed the way that applications are constructed, and has inspired a whole
new class of distributed, peer-to-peer storage infrastructures. Peer-to-peer storage
systems such as CFS [1, 2] and PAST [3, 4] seek to take advantage of the rapid
growth of resources to provide inexpensive, highly available storage without cen-
tralised servers, as centralised servers are considered a single point-of-failure and
subject to crashes, denial of service attacks and unavailability due to regional net-
work outages [5].

There are of course drawbacks to the peer-to-peer architecture. One is the
lack of control over the network. Security policies, backup policies and so on
are complicated to implement in a peer-to-peer network, and you run the risk of
having malicious peers join the system and try to subvert the system. Another
disadvantage is that peers tend to be more unstable than servers and will fail more
frequently.

Overcoming these challenges will however make it possible to build interesting
and useful applications that harness the power of the many computers connected to
the Internet.

6

1.1. MOTIVATION

XML

The amount of data of all kinds available electronically has increased dramatically
in recent years, with the expansion of the Internet and the increased interconnect-
edness between computers. This has introduced problems with the way data are
stored and exchanged.

First of all, formats differ to a great extent. Data reside in countless differ-
ent forms, ranging from unstructured data in file systems to highly structured data
in relational database systems. Furthermore, applications often store data in pro-
prietary non-standard formats. Secondly, data often stem from heterogenous data
sources, belonging to external organisations or partners, not under the application’s
control. Sometimes the structure is only partially known, and may change without
notice. [6, 7]

Research on XML started with the observation that much of today’s electronic
data do not conform to traditional relational or object oriented data models. An
XML document is an instance of semistructured data, which are data that cannot
always be constrained by a schema. XML is basically a linear syntax for expressing
tree structured data and has become widespread to the point of being the de facto-
standard for data exchange over the Internet.

Value orientation

The term “value-oriented programming” specifies a way of working with data and
variables that differs from the prevalent approach known from imperative program-
ming languages. The designation “value” describes an entity that cannot be altered.
Value-oriented programming is known from functional programming languages
such as SCHEME, Standard ML and Haskell that origin in the lambda calculus
[8].

The central idea of value-oriented programming is that data are immutable,
and you manipulate data by creating new values, not by altering existing data.
In traditional programming languages data are instead modified destructively and
consequently the original values are lost.

Most distributed systems have adopted the way of working with data from the
way imperative programming languages handle values – i.e. destructive updates
of data. However, this induces problems in a distributed environment. Caching
and replication of data are needed in distributed systems to provide fast access to
shared data (caching) and increased fault tolerance (replication). But these tech-
niques introduce problems with inconsistency if data can be updated. The system
must ensure that the concurrent execution of actions on replicated data is equiv-
alent to a correct execution on non-replicated data. This leads to complexity and
performance problems when multiple clients modify shared data.

In a distributed setting value-oriented programming has ana priori advantage
over imperative programming, as it does not suffer the problems of handling mul-
tiple imperative updates. Cache management and consistency protocols are un-

7

1.2. PROBLEM STATEMENT

necessary in a value-oriented environment as data are immutable, and updates can
be performed atomically in a distributed environment without complex transaction
management.

Distributed value-oriented XML Store

The proposed XML Store combines the above technologies. It uses an efficient,
distributed peer-to-peer file system for permanent storage and offers a rich value-
oriented API for traversing and manipulating XML documents.

Even though XML is quite widespread today, the conventional ways of working
with it seem somewhat undeveloped. XML documents are usually stored in flat
text files and manipulated using technologies such as SAX and DOM. By storing
documents in flat text files you only have serial access to XML documents and
this approach requires repeated serialisation and deserialisation from object to text
representation: Data are copied from disk and parsed to an abstract representation
that the programmer can work with. After the document has been processed and
possibly modified, it is again transformed to a textual representation and serialised
to disk. This is obviously inefficient and inflexible.

The XML Store offers a more flexible and sophisticated way of working with
XML. By working value-oriented and storing the documents according to their in-
herent tree structure a lot of possibilities arise for more elegant XML processing,
for example: The document can be traversed on disk thereby removing the need
for loading the entire document into RAM. Parts of a document can be loaded only
when required – so-calledlazy loading. By splitting the document up into subdoc-
uments identical parts can be shared between different documents, in RAM as well
as on disk. And when moving to a distributed setting caching and replication is
easily achieved due to the lack of need for a coherence protocol.

1.2 Problem statement

The main purpose of this thesis is to demonstrate that it is possible to design and
implement a value-oriented XML Store based on a peer-to-peer distributed file
system. The distributed file system is based on Chord, a distributed routing and
location protocol, which allows storage and retrieval of data. We propose a storage
strategy that divides an XML document in subdocuments according to the XML
document’s inherent tree structure and consider each subdocument an immutable
value. The value-oriented storage strategy offers many advantages over existing
technologies for handling XML, the most important being the possibility to obtain
sharing of identical subdocuments. We propose a flexible, value-oriented API that
takes advantage of sharing and uses the proposed storage strategy to handle ma-
nipulation of large XML documents without having to read and parse the entire
document into memory.

The implementation of the XML Store will serve as a proof-of-concept pro-

8

1.3. DESIDERATA

totype, that can be used for tests and evaluation, though it may not achieve the
performance and fault tolerance of complete systems. We focus on obtaining the
proper asymptotic complexity in its essential operations. Although we do not focus
on constant factor optimisations, the system must have an acceptable performance
in a realistic environment.

By designing and implementing a value-oriented API for storing, retrieving
and working with XML documents on top of a peer-to-peer file system based on
the Chord protocol, we intend to:

1. Put the concept of a value-oriented XML Store into practice, thereby either
verifying its potential or recognising flaws in the concept.

2. Present a rich and flexible API for value-oriented XML processing. To eval-
uate the applicability and adequacy of the API, we build a distributed e-mail
system to clarify whether the API is adequate or lacks features that an appli-
cation programmer would consider essential.

3. Determine how well suited the Chord protocol is for building a distributed,
value-oriented storage facility and evaluate the efficiency of the proposed
storage strategy. We do this by carrying out a number of experiments in-
volving storage and retrieval of different types of documents, and analyse
the consequences of working value-oriented and using sharing.

1.3 Desiderata

In this section, we list a number ofdesiderata(desired properties) of the XML
Store system. It is obvious that some of the desiderata are mutually exclusive –
for instance, it may not be possible to obtain both high performance and a com-
plete decentralised system and it is probably difficult to provide a global search
facility while ensuring that only authorised users have access to data. The order of
desiderata does not indicate priority.

• No single point of failureThe XML Store system should be fully distributed
and there should be no single point-of-failure in the system.

• Scale gracefullyThe XML Store system should scale gracefully when the
number of peers and amount of data increases.

• High performanceThe XML Store system should perform well, when sav-
ing and loading data (even under heavy load).

• Fault tolerant The XML Store system should be able to recover from fail-
ures, if such occur.

• AvailableThe XML Store system should guarantee availability of data stored
in it.

9

1.4. CONTRIBUTIONS

• Load balanceThe XML Store system should balance load evenly among the
peers in the system.

• Self-organisingThe XML Store system should be self-organising, meaning
that it should be able to automatically adapt to the arrival, departure and
failure of peers.

• SecureThe XML Store system should ensure that only authorised users get
access to data and resources found in the system, thereby protecting against
the following three security threats:

– Leakage: Acquisition of data by unauthorised users.

– Tampering: Unauthorised alteration of data.

– Vandalism: Interference with the proper operation of a system (e.g. by
denial of service attacks).

• SimpleThe XML Store system should be simple to implement, meaning that
a simple design, simple algorithms etc. are desirable.

• Efficient XML processingThe XML Store system should provide features
for manipulating XML documents efficiently.

• Applicable API The API of the XML Store should be simple, easy to use
and should provide features (methods) that an application programmer will
find adequate.

• Search facilityThe XML Store should support searching of the stored doc-
uments. Search is a useful operation when wishing to find data without prior
knowledge of its exact name or location. The XML Store should facilitate
different types of searches, ranging from finding a document with a certain
name or certain content to structured database style “queries” in XML doc-
uments.

1.4 Contributions

Henglein [9] provided the initial idea of a value-oriented “XML Store”, which is
part of the ongoing “Plan 10” project. The XML Store is a distributed infrastructure
for value-oriented storage of XML documents.

We have implemented a fully working prototype of the XML Store and com-
bined the idea with a distributed peer-to-peer system based on the Chord protocol.
Implementing a distributed storage facility specifically designed for storing XML
documents in a value-oriented way is novel. By implementing the XML Store pro-
totype, we have verified that the fundamental idea of an XML Store is realisable
and has many promising aspects.

10

1.5. DELIMITATIONS

By evaluating the XML Store prototype we have shown that there are sub-
stantial advantages to be gained from storing XML documents in the XML Store
compared to current technologies, such as SAX and DOM. Furthermore, we have
identified a number of areas that need to be improved for the prototype to grow into
a fully operational system.

We have designed and implemented an API for working efficiently with XML
documents in a value-oriented way, and have demonstrated how to use the API by
implementing a distributed e-mail application.

Furthermore, we have illustrated that the value-oriented programming model
in general has advantages in distributed systems.

1.5 Delimitations

Designing a distributed XML Store that fulfills the desiderata mentioned earlier
is an impossible task, since some of the desiderata are mutually exclusive. We
concentrate on designing a prototype to demonstrate important principles and gain
insight, instead of focusing on completing and optimising a small number of mod-
ules.

Throughout the thesis we will point out topics that will not be considered fur-
ther or which are only discussed but not implemented. In the following we will
summarise the delimitations of this thesis.

We do not treat the problem of distributed garbage collection and we do not
discuss facilities for searching and querying XML documents.

A range of topics are described, but have not been implemented in the proto-
type. These topics include fault tolerance, security, network locality, optimising
load balancing by means of virtual servers and collision detection protocols when
using cryptographic hashing. Except for collision detection all of these features
have been implemented and described by Dabek in the CFS system [1, 2], and not
much is gained by repeating the implementation here. Their ability to function in
the context of the XML Store framework is analysed, though.

Some modules of the prototype are clearly not optimally implemented – only
highly vulgarised implementations are provided. This includes the implementation
of network communication, local disk handling and name service. We analyse the
problems with the design of the current modules and sketch better solutions, but
will not go into a detailed design.

1.6 Thesis overview

This thesis is organised in three parts:Background, Analysis & designandImple-
mentation & evaluation.

Backgroundconsists of four chapters providing background knowledge of top-
ics that we find important for the understanding of this thesis. The chapters are:
Distributed systems (chapter 2), XML (chapter 4) and value-oriented programming

11

1.6. THESIS OVERVIEW

(chapter 3). If one is familiar with these topics, they can be skipped. Furthermore,
this part of the thesis presents a survey of work closely related to ours (chapter 5).

Chapters 6 through 13 constitutes theAnalysis & designpart of the thesis.
More specific, we give an overview of the XML Store system in chapter 6. Chap-
ter 7 provides a description of our API. The routing and location scheme, Chord,
is discussed in detail in chapter 8. In chapter 9 we present storage strategies and
discuss disk handling and chapter 10 provides a discussion of symbolic names and
a presentation of our name service. In chapter 11 and 12 we discuss network com-
munication strategies and security issues, respectively. Finally, chapter 13 provides
a summary of the second part of the thesis and outlines properties of the XML Store
system.

Implementation & evaluationbegins with a description of the program and a
brief discussion of test strategies (chapter 15). We continue by presenting the ex-
perimental results obtained with the prototype implementation of the XML Store
(chapter 16) and an evaluation of our API (chapter 17). Finally, we present conclu-
sions and potential future work in chapter 18 and 19.

12

Part I

Background

13

Chapter 2

Distributed systems

This chapter defines and discusses some central characteristics of distributed sys-
tems. Some key problems that have to be taken into consideration when design-
ing a distributed system, are also discussed. Finally, a special kind of distributed
architecture, namely the peer-to-peer architecture, is examined, since this is the
architecture that we base the XML Store on.

2.1 Characteristics of distributed systems

The motivation for constructing and using distributed systems stems from a desire
to share resources. There is yet no agreed definition of a distributed system [10],
but according to Coulouris et al. [5] a distributed system can be defined as follows:

Definition “We define a distributed system as one in which hardware or software
components located at network computers communicate and coordinate their ac-
tions only by passing messages”.

The above definition outlines the difference between a distributed system and a lo-
cal (monolithic) system. In a monolithic system hardware or software components
do not communicate via a network. The termmessagescovers both messages con-
taining simple data such as state and messages containing more complex data, such
as programs.

Since computers in a distributed system may be spatially separated by any dis-
tance, the definition of a distributed system has some significant consequences:
Concurrent activity, lack of global clock and independent failures [5]. In the fol-
lowing we briefly describe the consequences.

Concurrency

Typically in a distributed system, computers – or rather processes on computers
– share resources, such as files. It is therefore important that a distributed sys-

14

2.2. CHALLENGES DESIGNING DISTRIBUTED SYSTEMS

tem can handle several processes concurrently accessing a shared resource without
blocking each other or corrupting the shared resource [5].

Lack of global clock

In contrast to processes that run on one computer, processes that run on several
computers in a distributed system do not have a common global clock [5]. Com-
puters in a distributed system cannot completely synchronise their clocks since
they are communicating and coordinating their actions by passing messages. Since
messages are sent between computers in a network and since it is typically not pos-
sible to determine exactly for how long a message has been on its way, it is difficult
to synchronise clocks on different computers (even though there are protocols that
seek to assure an accurate synchronisation, e.g. NTP [11]). This means that in
practice, communication between computers in a network is asynchronous.

Independent failures

In a distributed system each component of the system can fail independently of the
rest of the system [5]. This means that it is possible for a single component (e.g. a
computer process or network connection) to fail while the remaining components
continue to function. When an independent failure occurs it may not be possible
for the remainder of the system to detect whether the network has failed or has just
become very slow due to heavy load. Failures of a computer is not immediately
made known to the other components of the system with which it communicates.

2.2 Challenges designing distributed systems

When designing a distributed system there are some key challenges one has to deal
with or at least should be aware of. In the following we will discuss some of these
challenges and their solutions as stated in Coulouris et al. [5].

Heterogeneity

In distributed systems it is often necessary that heterogenous software and hard-
ware work together. Programs that are part of the distributed system may be written
in various programming languages, they may run on different kinds of computers
having different operating systems, capacities etc. and different types of network
may be involved. Furthermore, very often different developers and organisations
contribute to the implementation of a distributed system.

To accommodate a heterogenous environment in a distributed system middle-
ware layers may be introduced so that the heterogeneity is masked.

15

2.2. CHALLENGES DESIGNING DISTRIBUTED SYSTEMS

Scalability

Often many clients need to share the same resource in a distributed system. Scal-
ability concerns the ability of a system to accommodate an increasing number of
concurrent clients that access some resource or work together.

A system is described as scalable if it remains effective when there is a signif-
icant increase in the number of resources and users [5]. An effective distributed
system should be able to easily accommodate expansions as well as reductions
[12].

Concurrency management

As mentioned earlier, a distributed system consists of processes, placed on differ-
ent computers, that may share some resources. If several processes concurrently
modify the same resource it may become inconsistent, and therefore concurrency
must be controlled in a distributed system.

There are different kinds of concurrency control techniques, e.g.lockingand
timestamp ordering[13].

A typical solution to the concurrency problem is to use transactions, which are
atomic units of processing that are either completed entirely (committed) or not at
all (abortedor rolled back) [13]. A transaction may include one or more opera-
tions on a shared resource (i.e. insertion, deletion, modification and retrieval op-
erations) [13]. Transactions submitted by various users may execute concurrently,
and therefore concurrency control is needed to ensure that concurrent transactions
will execute in a controlled manner.

However, if the resource is distributed due to replication or caching, concur-
rency control becomes considerably more complex, since locking of a resource is
no longer sufficient for preventing inconsistencies.

Failure handling

Handling failures in a distributed system can be quite difficult, because it can be
hard or even impossible to detect failures. If a failure has been detected, it is
necessary to decide on a proper response. Such a response could be to retry the
failed event (i.e. recovery). If a server crashes in the middle of processing data,
the state of data need to be recovered or “rolled back”, to make sure that data will
remain in a consistent state.

Typically it is infeasible to try to detect and correct every failure that might
occur in a large distributed system. Therefore, it may be better if some failures are
tolerated. One way to make systems fault tolerant is by using redundancy.

Openness

It is often necessary to change a distributed system, e.g. when parts of a distributed
system have to be replaced by a new implementation which offers better support of

16

2.2. CHALLENGES DESIGNING DISTRIBUTED SYSTEMS

security, failure handling and so on. Also when new types of clients need access to
a shared resource, it may be necessary to change the distributed system. Coulouris
et al. [5] mentionopen standardsas the best way of supporting openness. Open
standards means standards which are documented and public available (they are
independent from individual vendors), and thereby possible to implement on vari-
ous systems. Some examples of open standards regarding distributed systems are
TCP/IP and UDP/IP. These open protocols make it possible to connect new sys-
tems to existing systems as long as they support the protocols, regardless of the
actual network and operating system.

Security

When data are stored in a distributed system security must be taken into consid-
eration because of the importance and intrinsic value that the data might have to
the owners/users of the data. Some of the main challenges concerning security that
Coulouris et al. [5] mention are:

• Confidentiality: Confidential data should only be available to authorised
users (protection against leakage).

• Integrity: It is important that vicious individuals/users cannot destroy, alter
or corrupt data (protection against tampering).

Both of the above two challenges can be met by the use of encryption. With
encryption techniques it is possible to conceal information in a message and to
authenticate and identify another user somewhere in the network.

Another challenge concerning security is protection against vandalism, such
as denial of service attacks. It is important to be able to prevent suchvirus-style
attacks on a server.

Transparency

Coulouris et al. [5] define transparency as “The concealment from the user and the
application programmer of the separation of components in a distributed system so
that the system is perceived as a whole rather than as a collection of independent
components”.

As can be deduced from the above definition, the purpose of transparency is
to make it easier for users and application programmers to use and work with a
distributed system – they will not get confused.

As an example of transparency, consider Java RMI, where method invocations
on remote objects are very much like local method invocations, as they use the
same syntax.

17

2.3. PEER-TO-PEER SYSTEMS

2.3 Peer-to-peer systems

In recent years peer-to-peer systems have become quite popular as they offer some
advantages over traditional client-server systems, albeit often at different fields of
application. In this section some of these advantages are described and some of the
challenges that the peer-to-peer architecture introduces are outlined.

The designationpeer-to-peerrefers to the topology and architecture of the
computers in a distributed system [14]. Peer-to-peer systems can be characterised
as decentralised distributed systems in which all participants have equal status, and
where all communication is symmetric [3, 15, 16].

Decentralisation of a system prevents a small group of participants from limit-
ing the overall performance of the system. “Equal status” and “symmetric commu-
nication” means that in contrast to the client-server model, there is no distinction
between servers and clients in the peer-to-peer model: A peer can both request a
service and provide a service [16]. Figure 2.1 illustrates a peer-to-peer network,
consisting of different kinds of peers.

Figure 2.1:Illustration of a peer-to-peer network.

Existing peer-to-peer systems, such as Freenet [17] and Gnutella [18], demon-
strate the benefits of cooperative storage and serving. One of the primary advan-
tages of decentralised peer-to-peer systems over client-server systems, is their ex-
tensibility [16, 19].

Figure 2.2 illustrates a typical client-server architecture. As one might can
imagine, the pressure on the central server increases when clients are added to
the client-server network. When adding more peers to a peer-to-peer network the
capabilities of the system grows stronger, because there is no single point-of-failure
and each peer contributes resources, such as storage space and CPU cycles, to the
overall system [16]. Peer-to-peer systems have the ability to utilise idle storage
and network resources of large numbers of participating computers [1]. They also
have the potential of being more fault tolerant than their client-server counterparts,
as they do not have a single point-of-failure [2, 19]. Furthermore, peer-to-peer

18

2.3. PEER-TO-PEER SYSTEMS

Server

Client

Client
Client

Client

Client

Client

Client

Figure 2.2:Illustration of a client-server network.

systems tend to have a higher degree of availability, since a large number of peers
can crash or leave the system, without destroying the whole system. In theory only
onepeer is needed for a peer-to-peer system to be “alive” [16]. In general, it is quite
difficult to evaluate the scalability of decentralised systems such as peer-to-peer
systems. Theoretically, the more peers you add, the more capable a peer-to-peer
system should be. However, in practice it is necessary to keep the system coherent,
and algorithms responsible for this often carry a lot of overhead [19]. Therefore,
peer-to-peer systems might not scale well.

Challenges and drawbacks

There are also some challenges and drawbacks associated with the design of peer-
to-peer systems. Peers in a peer-to-peer network are less enduring than servers
in a client/server network, and will join and exit the network at will. This entails
that the underlying peer-to-peer protocol must be able to adapt to frequent changes
in the networks configuration without affecting robustness and efficiency of the
system [1].

One drawback to the peer-to-peer architecture is the lack of centralised control
over the network. As a consequence peer-to-peer systems tend to be hard to manage
[19]. In a client-server network administration is only needed at the central points.
With the peer-to-peer architecture a number of organisational, administrative etc.
problems emerges. In this thesis, however, we will focus on the technical problems
related to the peer-to-peer architecture.

Peer-to-peer systems also raise some interesting security problems. Making
your computer available to any other peer-to-peer participant and allowing them
to upload to and download from your computer requires a level of trust that most
people find uncomfortable [20]. Since security policies can be hard to implement
in peer-to-peer systems, these systems tend to be insecure [19].

19

2.3. PEER-TO-PEER SYSTEMS

However, according to both Dabek et al. [21] and Rowstron & Druschel [22]
the core technical problem facing large-scale peer-to-peer systems is to provide ef-
ficient means for data locating and routing within the decentralised network.

We have now presented peer-to-peer systems and distributed systems in general. A
discussion and survey of specific peer-to-peer systems is presented in chapter 5.

20

Chapter 3

Value-oriented programming

This chapter describes the basic concepts of value-oriented programming, which is
the programming model used by the XML Store.

Value-oriented programming is programming with values and references to val-
ues (value references), which are values themselves. Values are per definition im-
mutable, e.g. the value5 will always be5. This principle does not only apply to
primitives but also to complex and composite values such as lists and tree struc-
tures. Hence, it is impossible to change any constituent of a composite value.

Programming with immutable values may, for the purely imperative program-
mer, seem alien and not very convenient. As the imperative paradigm revolves
around assignment and hence modification of data, not being able to update may
seem like a limitation in the programming model. This is however not the case.

The imperative programming model has a “copy-and-update” style of data ma-
nipulation, which typically involves the following three steps:

1. Copy data from source.

2. Destructively update the copy.

3. Copy the updated data to source.

Value-oriented programming adopts a “share-and-create” style known from func-
tional programming. It is characterised by sharing as much data as possible and
only copy data if there is a need for update [9]. The three steps from above corre-
spond to:

1. Take a reference to data.

2. Nondestructively create a new value, which typically involves copying parts
of the original data.

3. Replace the original reference with a reference to the new value.

It is not necessary to move to a functional programming language, to find an ex-
ample of the value-oriented concept. Java’s String API is value-oriented. Strings

21

3.1. VALUE REFERENCES AND SHARING

in Java are treated as immutable objects, which means that all modification meth-
ods create a new String object, leaving the original object unchanged. An example
which illustrates the “create” part of the “create-and-share” style is the concatena-
tion of two String objects. In Java this is accomplished by creating a third String
object, leaving both original strings unchanged. The “share” part refers to the use
of references to existing data, and is possible because of value references and the
immutable nature of values. Value references and sharing are explained in the fol-
lowing section.

3.1 Value references and sharing

A value reference is a unique identifer for a value. According to Henglein [9] it
has the following desired properties:

• A value reference is a deterministic function of the value alone.

• A value reference is injective, meaning that distinct values are mapped to
distinct value references. As a consequence of this, a value reference is as
immutable as the value itself – it cannot be updated to refer to a different
value.

• Whereas a value can be arbitrarily large, a value reference has a limited size.

Since a value reference is independent of the location of the value, a reference
resolver is necessary to retrieve the actual value. The Chord protocol is an example
of a reference resolver in a distributed environment (Chord is explained in detail in
chapter 8).

abc xyz

defghijklm nopqrstuvw

Unboxed representation

Boxed representation

Value reference

abc defghijklm nopqrstuvw xyz

1234 5678

Shared value

Figure 3.1:A boxed and unboxed representation of a list of values. The figure also shows
sharing of values.

Consider the unboxed representation of a list in figure 3.1. Because of the
deterministic relationship between a value and its value reference, they can always
be substituted for each other. This is illustrated in the boxed representation in figure
3.1, where two values have been replaced by their value references. The technique

22

3.2. VALUE-ORIENTED TREES

of boxing a value is also calledvalue coalescing: copies of data are replaced by
references to a single instance of the data [9].

Value references (boxes) allow efficient sharing of values. Figure 3.1 shows
an example of sharing, where a value is shared between two lists. Observe that
sharing is only possible because value-oriented programming provides a semantic
guarantee:No updates.

3.2 Value-oriented trees

This section describes how to work value-oriented with tree-structured data. We
focus on tree-structured data, because an XML document is a linear syntax for
describing labeled trees (see chapter 4.1 for a detailed description of XML).

Consider the two trees in figure 3.2. Instead of having two isomorphic subtrees,
one of the subtrees is replaced by a reference to the subtree. In this way the two
trees form a directed acyclic graph (DAG), as a node can now have more than one
parent. It is still possible to recreate the original two trees by traversing the DAG
from the two nodes that are roots in the trees.

B

speech

speaker line

A

speech

speaker line

speech

line

BA

speech

speaker line

Hamlet to be Hamlet or not
to be

Hamlet to be or not
to be

Figure 3.2:Isomorphic subtree shared by two trees A and B.

In value-oriented programming every single node in a tree can be considered
an immutable value. Modification of a tree is accomplished by creating a new and
modified tree and sharing unchanged parts. Figure 3.3 shows tree representations
of two XML documents,A andB. In documentA we want to change the content
of nodeHamlet to Ophelia. A modification of a node propagates all the way to

23

3.2. VALUE-ORIENTED TREES

the top of the tree, which means that a new treeA′ has to be built from the root of
A. This is less wasteful than it sounds sinceA′ shares most of its nodes withA and
at mostdepth(A) new nodes are introduced inA′.

A'

speech

speaker

A

speech

speaker line

speech

line

B

speech

line

BA

speaker line

Ophelia

Hamlet or not
to be

HamletOphelia

to be

or not
to beto be

speech

Figure 3.3:Modification of a tree using value-oriented programming.

The rest of the basic operations for tree manipulation are accomplished in a
similar way as update: To delete a subtree a new tree is built without the subtree
that we want to delete, and to add a node a new tree is built with the new node
added to the desired subtree.

24

Chapter 4

XML

Since our data storage is based on XML we briefly describe the XML standard
in this chapter. We also give brief, informal introductions to a number of XML
related technologies that are relevant for this work, namely a simplified form of
XML called Minimal XML, and SAX, DOM and XPath. If the reader is already
familiar with these technologies, the chapter can be skipped.

4.1 What is XML?

XML (Extensible Markup Language) is a standard for document markup, defined
by the World Wide Web Consortium (W3C) in February 1998 [23]. It defines a
standard syntax for markup of data with simple tags.

XML can be considered an instance ofsemistructured data. Semistructured
data are often referred to as “self-describing” or “schema-less”, which means that
neither the structure of data nor the type of data is required to be described sepa-
rately [6, 24, 25]. Instead semistructured data are directly described using a simple
syntax (XML uses tags for instance), and thus there is no need for ana priori
schema as in relational or object-oriented data models. [25] Semistructured data
may have an incomplete or irregular organisation indicating that semistructured
data are more suitable for modelling heterogeneity than both the relational and
object-oriented model [25, 26].

Data exchange and publication on the Web often involves heterogenous data,
which is one of the reasons why XML has become widely distributed on the Web.
XML has in recent years become a de facto standard for data representation on the
Web, providing a simple data syntax which is both human- and machine-readable
[25].

XML is an instance of SGML (Standard Generalised Markup Language) [23],
just as, the arguably most widespread markup language, HTML (HyperText Markup
Language) is. The main difference between HTML and XML is that in HTMl there
is a fixed set of tags and semantics. XML on the other hand is a meta-markup lan-
guage [27], which means that it specifies neither semantics nor a tag set. XML is

25

4.1. WHAT IS XML?

therefore completely extensible, and more regular than HTML, as it allows users to
define their ownelements. Elements are the basic building blocks of XML. They
may contain text, comments, and other elements, and consist of a start tag and an
end tag.

Figure 4.1 shows an example of a simple XML document. The document has
four different tags, namelyplay , title , personae andpersona . The title el-
ement contains simple text, whereas thepersonae element has twopersona ele-
ments both containing text. The root element of the document isplay . Thetitle

andpersonae elements are considered children ofplay , and the twopersona ele-
ments are considered children ofpersonae .

<play>
<title>

The Tragedy of Hamlet, Prince of Denmark
</title>
<personae>

<persona>
HAMLET

</persona>
<persona>

OPHELIA
</persona>

</personae>
</play>

Figure 4.1:The figure shows a simple XML document containing five elements, the root
element beingplay .

4.1.1 Well-formed XML

XML documents must bewell-formedto be parsed correctly [27]. A well-formed
XML document is one that has exactly one root element, has every tag closed (i.e.
every start-tag must have a matching end-tag), and where no overlapping between
tags occur (no interleaving). It is perfectly alright to embed an element in another
element, but then this element must be completely enclosed by the other element.
That is, both start tag and end tag must be inside the other element.

Order

The contents of an XML document are by definition ordered. This means that
the order of the children is crucial to the sense of the XML document. Since
semistructured data are considered unordered, XML and semistructured data are
thus different with respect to this characteristic [28].

26

4.2. MINIMAL XML

Tree-representation of XML

A well-formed XML document represents a tree structure. Embedded elements
reflect a parent-child relationship, where the embedded elements can be viewed
as children of the enclosing element. The single topmost element of an XML
document has no parent. This element is the root element and it contains all other
elements in the document.

play

title personae

persona persona
The Tragedy
of Hamlet,
Prince of
Denmark

HAMLET OPHELIA

Figure 4.2:Tree representation of the XML document found in figure 4.1.

The tree in figure 4.2 represents the XML document presented in figure 4.1.
The root element of the XML document is theplay -element, and the root node of
the XML tree is consequently a node labeledplay.

4.1.2 Valid XML

An XML document can optionally conform to a Document Type Definition (DTD),
that establishes a set of constraints for an XML document. An XML document is
consideredvalid if it follows the constraints that the DTD imposes. [27]

Figure 4.3 shows a DTD forplay documents (shown in figure 4.1), which
states that aplay element contains onetitle child element and onepersonae

child element. It also states that bothtitle andpersona elements contain text,
and thatpersonae elements contains an arbitrary number ofpersona elements.
The expressionpersona* is a regular expression, meaning any number ofpersona

elements. Other common regular expressions used by DTD aree+ (one or more
occurrences ofe), e? (zero or one occurrence ofe), e1 | e2 (e1 ORe2, alternation)
ande1, e2 (bothe1 AND e2, concatenation).

4.2 Minimal XML

“One should not increase, beyond what is necessary, the number of en-
tities required to explain anything.”William of Ockham (1285-1349)

27

4.3. XML TECHNOLOGIES

<!ELEMENT play (title, personae)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT personae (persona*)>
<!ELEMENT persona (#PCDATA)>

Figure 4.3:Example of a DTD for theplay document.

In this section we introduce Minimal XML, since we use this markup language
in the XML store for the sake of simplicity. Minimal XML1 is a simplified version
of the XML language [29, 30]. According to Park [31], the purpose of making an
even simpler form of SGML than XML was to make:

• A subset that allows easily implemented parsers that are much faster and
smaller than full XML parsers.

• A subset with a simpler information model that can easily be mapped to
other information models.

• A subset that is much easier to learn, teach and use.

Several XML features are omitted from Minimal XML. Some of these are: At-
tributes, Processing Instructions, Document Type Declaration, Non-character entity-
references and CDATA marked sections. The most significant difference when
modelling data in Minimal XML is the lack of attributes to hold information. In-
stead child elements can be used to hold information (see figure 4.4). The first part
of the figure (A) shows an XML document which uses attributes to hold informa-
tion about the speaker of the line. This document does not conform to the Minimal
XML standard since an attribute is used. The second part of the figure (B) illus-
trates an XML document which uses a child element (speaker) to hold the same
information. This document conforms to the Minimal XML standard.

4.3 XML technologies

The following presents the XML technologies SAX, DOM and XPath. SAX and
DOM are arguably the most predominant technologies for working with XML doc-
uments, and the advantages and drawbacks associated with them will therefore be
discussed. XPath is a specification for addressing specific parts of an XML docu-
ment using path based regular expressions. In the value-oriented API we use XPath
and we therefore briefly describe the syntax.

1Minimal XML was previously known as Simple Markup Language (SML).

28

4.3. XML TECHNOLOGIES

A <scene>
<speech speaker="HAMLET">

<line>
To be, or not to be: that is the question:

</line>
</scene>

</scene>

B <scene>
<speech>

<speaker>
HAMLET

</speaker>
<line>

To be, or not to be: that is the question:
</line>

</speech>
</scene>

Figure 4.4:Part A does not conform to the Minimal XML standard while part B does.

4.3.1 SAX and DOM

SAX

The Simple API for XML(SAX) is an example of an event based framework for
parsing XML documents. SAX is not itself an XML parser, but a defines a set of
callback methods that are to be called by the parser when an event occurs, such as
when the parser encounters the start tag and end tag of elements. To use SAX, an
application programmer registers a SAX handler with the parser and begin parsing
the document. The handler is notified of events when the callback methods are
invoked by the parser. [23, 32]

An XML document is thus presented as a linear sequence of events. Table
4.1 shows the events generated by the SAX parser when parsing an XML doc-
ument. SAX provides no abstract representation of the document, only events,
which makes it difficult to work with and modify an XML document.

DOM

TheDocument Object Model(DOM) is an example of an API providing an abstrac-
tion of XML documents. In DOM, XML documents are represented as objects in
a tree structure. DOM defines interfaces for each different entity in an XML doc-
ument (elements, character data blocks, attributes, etc.), and specifies methods for
traversing the structure and manipulating the document.

Unlike SAX, that provides stream-based access to the XML data, DOM pro-
vides tree-structured access to nodes in the object representation. Furthermore,
DOM provides ways to manipulate XML data, whereas SAX only provides access

29

4.3. XML TECHNOLOGIES

Document Event
<play> begin ”play”

<title> begin ”title”
The Tragedy of... character data ”The Tragedy of...”

</title> end ”title”
<personae> begin ”personae”

<persona> begin ”persona”
HAMLET character data ”HAMLET”

</persona> end ”persona”
</personae> end ”personae”

</play> end ”play”

Table 4.1:Events generated by the SAX parser when processing the XML document in
the left side of the table.

to data. DOM loads the entire XML document into an object structure, using a
parser (actually, often a SAX parser) to build the object structure. It is thus, not
possible to traverse and manipulate the object structure until the entire document
has been read. Since DOM has to read the entire XML document into the memory
to be able to build the tree structure, a large amount of RAM may be required when
working with large XML documents. [23, 32]

SAX and DOM

It is difficult to talk of advantages of SAX over DOM or vice versa as the tech-
nologies have somewhat different purposes. SAX allows a document to be handled
sequentially in a stream-based manner, without having to first read the entire doc-
ument into memory. SAX is therefore useful when you need a fast, single pass
through the XML document to collect relevant data. On the other hand, DOM
provides the means for random access manipulation of the data within an XML
document, while SAX only provides serial access to them.

4.3.2 XPath

XPath is a specification language designed by the World Wide Web Consortium
(W3C) [33]. Being a subset of XQuery, it is an expression language for address-
ing parts of an XML document, used by various XML technologies such as XSL
Transformations (XSLT) and XML Pointer Language (XPointer) (see [27, 34, 35]
for a detailed description of XSLT and XPointer).

As the name implies XPath uses path notation for navigating through the hier-
archical structure of an XML document [33]. Like DOM, XPath views an XML
document as a tree structure consisting of nodes of different type, each representing
the entities of a document.

30

4.3. XML TECHNOLOGIES

Location path

The primary syntactic construct in XPath is thelocation path, which is a sequence
of location stepsseparated by a slash (/). Each step in turn selects a set of nodes
relative to the context node and each node in that set is used as a context node for
the following step. Consider the following location path:

child::act/child::scene

This location path can be evaluated against the XML document in figure 4.5, and
will select thescene element children of theact element children of the document
root node (play), which is the initial context node.

<play>
<title>

The Tragedy of Hamlet, Prince of
Denmark

</title>
<act>

<title>
ACT III

</title>
<scene>

<title>
SCENE I. A room in the castle.

</title>
<speech>

<speaker>
HAMLET

</speaker>
<line>

To be, or not to be: that is the question:
</line>

</speech>
<speech>

<speaker>
OPHELIA

</speaker>
<line>

Good my lord,
</line>
<line>

How does your honour for this many a day?
</line>

</speech>
</scene>

</act>
</play>

Figure 4.5:Simple XML document with root elementplay.

The syntax of a location step consists of anaxis, anode testand zero or more
predicates[33]. The syntax for a location step is the name of the axis followed

31

4.3. XML TECHNOLOGIES

by the node test and zero or more expressions each in square brackets. The axis
and node test are separated by a double colon (::). A location step thereby has the
following syntax:

axis::nodetest[predicate 1][predicate 2]...[predicate N]

Axes An axis identifies a direction of traversal. It specifies the relationship be-
tween the nodes selected by the location step and the context node. In XPath an
axis can be either a forward axis or a reverse axis. An axis which contains the con-
text node and nodes that follow the context node in document order is a forward
axis. Document order organises element nodes sequentially after the occurrence
of their start-tag in the corresponding XML document.Child anddescendantare
examples of forward axes andancestor, precedingandpreceding-siblingare ex-
amples of reverse axes.

Node tests A node test specifies the node type and name of the nodes selected by
the location step. A node test is true if and only if the node has a name and type
equal to the name and type specified by the node test. The:: operator designates
which axis the immediately following test should be applied to.

Consider the XML document in figure 4.5, and let the nodeplay be the context
node. The node testchild::act will then select allact children ofplay . If the
context node has noact children, it will select an empty set of nodes. It is possible
to use the character∗ as a wild card in the node test. Letplay be the context node
again, thenchild:: ∗will select all children ofplay , in this case theact andtitle

elements.

Predicates Predicates use equality tests (=, ! =, <, >,<=, >=) to further refine
the set of nodes selected by the location step [33]. For instance, the predicate
position()=4 evaluates to true, if the context node is the fourth node in the node-
set. To retrieve the first speaker of the XML document in figure 4.5, one could use
the following location path:
child::act/child::scene/child::speech[position()=1]/child::speaker

When evaluated, the above expression will return the elementspeaker with the
content “HAMLET”.

32

Chapter 5

Related work

This chapter presents a survey of related work in the field of peer-to-peer storage
and lookup systems. We will explore key features and deficiencies of some preva-
lent peer-to-peer systems that bear most relevance to the XML Store project. At
the end of the chapter some other related technologies are briefly discussed.

The termpeer is used to describe participants of peer-to-peer systems when
these are discussed in general. However, in section 5.1.1 participants are denoted
nodes, since the routing and location schemes consider participants as abstract en-
tities in an algorithm.

5.1 Peer-to-peer systems

There are currently several peer-to-peer systems in use, and many more are under
development. The popularity of peer-to-peer file sharing systems such as Napster
[36, 37] and Gnutella [18] has created a flurry of recent research activity into peer-
to-peer architectures [1, 2, 3, 4, 17, 38, 39].

Although the exact definition of “peer-to-peer” is debatable, these systems typ-
ically lack dedicated, centralised infrastructure, but rather depend on the voluntary
participation of peers to contribute resources out of which the infrastructure is con-
structed (see section 2.3 for a description of peer-to-peer systems). One challenge
of peer-to-peer systems is to organise peers into a cooperative, global index (used
to map file names to their location in the system) so that all content can be quickly
and efficiently located by any peer in the system.

In Napster [36, 37], a central server stores an index of all files available within
the system. To retrieve a file, a user queries this central server using the desired
file’s well known name and obtains the location (the IP address) of a user ma-
chine) storing the requested file. The process of locating a file is thus very much
centralised and therefore, Napster is not considered a “pure” peer-to-peer system.

Gnutella [18, 40] is a decentralised peer-to-peer system and hence, there are no
central servers to query when wishing to locate a file. Instead, peers in the Gnutella
network use broadcasting to a great extent to locate files.

33

5.1. PEER-TO-PEER SYSTEMS

Peer-to-peer systems such as the present XML Store, CFS [1, 2], PAST [3, 4],
OceanStore [38, 39] and Freenet [17], seek to provide highly available storage with
efficient location-independent routing and location in a decentralised environment.
The notionrouting refers to the forwarding of messages (queries) from one peer to
another in the peer-to-peer system, until the destination peer is reached.

The core of many of these peer-to-peer systems consists of novel distributed al-
gorithms for routing and locating data independently of its physical location. These
algorithms resemble distributed hash tables, supporting the basic operations insert,
delete and lookup of〈key,value〉 pairs. In essence, they distribute〈key,value〉 pairs
across various peers in a large network, in a manner that facilitates scalable access
to these pairs using the key. [41]

5.1.1 Decentralised routing and location

This section discusses some decentralised routing and location schemes that are
used by peer-to-peer systems related to the XML Store system.

The Chord routing and location scheme [21, 42, 43, 44] constitutes the core of
the XML Store system, as well as of the CFS system [1, 2]. Chord is a peer-to-peer
routing substrate, which is efficient, scalable, fault-tolerant and self-organising.
The Chord protocol will be discussed in detail in chapter 8 – the following is only
a brief presentation of Chord and has been included for comparison reasons.

With Chord, each node and each data item is assigned a unique identifier.
Nodes are ordered according to their identifiers, in a one-dimensional circle corre-
sponding to the Chord identifier space. Data items are assigned to Chord nodes in
a location-independent manner. Each Chord node uses a logarithmic-sized routing
table (O(log N)), called afinger table, to route and locate data in the Chord sys-
tem. The routing and location time of Chord isO(log N), where N is the number
of nodes in the system.

Several recent projects concerning decentralised routing and location are close-
ly related to Chord [21, 42, 43, 44]. Some of these projects are Plaxton [45], Pastry
[22], CAN [46] and Tapestry [47].

The Plaxton scheme [45] is innovative in that routing and location of data can
be achieved across an arbitrarily-sized network, while using a small constant-sized
routing information at each hop. With Plaxton, nodes and data are assigned iden-
tifiers which are represented by a common baseb. Each Plaxton node uses a local
routing table (called aneighbour map), to incrementally route messages to the des-
tination identifier, digit by digit. This routing method guarantees that any existing
node in anN -node Plaxton system will be found within at mostO(log N) hops
[45]. The location of a specific data itemd, involves routing towards a so called
root nodeof d, which stores information about the location ofd. If information
about the location ofd is encountered at a node on the way to theroot node, then
the message is immediately redirected to the node containingd.

There are some limitations related to the Plaxton scheme. First, Plaxton uses
global knowledgeto deterministically choose aroot nodeto which a given identifier

34

5.1. PEER-TO-PEER SYSTEMS

for some data should be mapped. This obviously complicates dynamic additions
and removals of nodes [47]. Theroot nodeis essential for location and therefore
represent a single point-of-failure to the Plaxton system [47]. Secondly, the Plaxton
scheme makes an assumption that the Plaxton network is a static data structure,
which means that dynamic node insertions, deletions and failures cannot be handl-
ed. Therefore, the Plaxton scheme is not considered fully self-organising.

The routing and location mechanisms of Tapestry [47] (used by OceanStore)
and Pastry [22] (used by PAST) are similar to the routing and location mechanisms
introduced in the Plaxton scheme [45]. The approach of routing towards nodes
that share successively longer address (identifier) prefixes, is common to all three
schemes [22]. However, the location mechanisms differ in that neither Pastry nor
Tapestry have a singleroot nodeper data item storing the location of it. Instead, this
information is stored at multiple nodes, thereby avoiding a single point-of-failure.

In both Pastry and Tapestry, the expected number of routing hops isO(log N),
whereN is the number of live nodes in the network. The size of the routing table,
which is maintained in each node, isO(log N). [22]

CAN (Content-Addressable Network) [46] routes messages in ad-dimensional
space. In CAN, nodes are addressed by their IP addresses. Each data record has a
unique key which is hashed so that it corresponds to a point in thed-dimensional
space. Each CAN node maintains a routing table withO(d) entries. Any node can
be reached inO(dN1/d) routing hops. Unlike the routing tables of Chord, Pastry
and Tapestry, the routing table of CAN does not grow with the network size. On
the other hand, the number of routing hops grows faster thanO(logN). However,
if d is chosen to bed = (log N) CAN will achieve the same routing and location
complexity as Chord, Pastry, Tapestry and Plaxton.

Although the Chord protocol is closely related to the Plaxton, Pastry and Tape-
stry protocols, there is a difference in their routing approach. Instead of routing
towards nodes that share successively longer address prefixes with the destination,
as Pastry, Tapestry and Plaxton do, Chord forwards messages based on numerical
difference with the destination address [22].

Deterministic location

Deterministic location means that the system guarantees to find data if they exist
in the system.

Peer-to-peer systems like Gnutella and FreeNet are not guaranteed to find an
existing file [17, 18]. If a file is not returned when a user looks it up, she will not
have any idea about whether the lookup has failed because the file does not exist in
the system or because the file was simply not found.

Chord, Plaxton, Pastry, Tapestry and CAN represent a second generation of
peer-to-peer location and routing schemes which, unlike Gnutella and Freenet,
guarantees a definite answer to a query in a bounded number of network hops,
while retaining scalability and self-organisation [3, 22, 43, 45, 46, 47].

35

5.1. PEER-TO-PEER SYSTEMS

Network locality

Retrieving data from a nearby node, in terms of some proximity metric (such as
the ping delay, the number of IP routing hops or geographic distance), minimises
latency and network load [22]. It is therefore desirable to direct a lookup query
towards a node that is located relatively near the client making the request.

The Chord protocol makes no explicit effort to take network locality into ac-
count when routing data or queries1 [21, 42, 43, 44].

In contrast, Plaxton, Tapestry and Pastry consider network topology when rout-
ing data, thereby seeking to minimise the distance that data and queries travel ac-
cording to some scalar proximity metric [22].

Like Chord, CAN does not attempt to approximate real network distance [46].

Self-organisation

Operating under continuous changes, the routing and location infrastructure must
be able to adapt to a dynamic changing environment where nodes come and go.
Thus, the topology of the location and routing infrastructure must be self-organising
[47].

Chord is self-organising in that it automatically adapts to the arrival, departure
and failure of nodes. Like Chord, Pastry, Tapestry and CAN posses self-organising
properties as they support dynamic node insertions and deletions and are able to
handle node failures [22, 43, 46, 47, 48]. The Plaxton scheme, on the other hand,
is not fully self-organising, as it cannot adapt to dynamic node insertions, deletions
and failures [45].

Fault-tolerance

Typically, arbitrary node failures must be tolerated in peer-to-peer systems. The
basic Plaxton scheme [45] is sensitive to a variety of failures. Since each file has
a singleroot, a single point-of-failure for each piece of data exists. This single
point of failure is a potential subject of denial of service attacks and constitutes an
availability problem.

Chord, Pastry, Tapestry and CAN are deterministic, and thus vulnerable to ma-
licious or failed nodes along the route that accept messages but do not correctly
forward them. This means that repeated queries could thus fail each time, since
they are likely to take the same route. To overcome this problem, the routing is
randomised in Pastry [22].

Summary of routing and location

Table 5.1 gives an overview of some of the most important characteristics of the
aforementioned routing and location schemes. As mentioned earlier, the Chord
protocol will be discussed in detail in chapter 8.

1CFS, which is built on top of Chord, use network locality when routing data.

36

5.1. PEER-TO-PEER SYSTEMS

Chord Pastry Tapestry CAN Plaxton
Lookup
(hops)

O(log N) O(log N) O(log N) O(dN1/d) O(log N)

Routing info
per node

O(log N) O(log N) O(log N) O(d) O(log N)

Determinis-
tic location

Yes Yes Yes Yes Yes

Scalable Yes Yes Yes Yes Yes

Self-
organising

Yes Yes Yes Yes No

Decentrali-
sed

Yes Yes Yes Yes Yes

Network lo-
cality

No Yes Yes No Yes

Table 5.1:Characteristics of related peer-to-peer routing and location schemes.N is the
number of nodes in the system in question andd is the number of dimensions in the CAN
scheme.

5.1.2 Properties and features of related peer-to-peer systems

In the previous section, we described different decentralised routing and location
schemes used by various peer-to-peer systems, related to the XML Store system. In
this section we describe some of the properties and features of related peer-to-peer
systems. The peer-to-peer systems in question are: CFS, PAST, Napster, Gnutella,
OceanStore and Freenet.

Scalability

The scalability of data location and query in peer-to-peer systems is of paramount
concern. It should be possible to extend the system with new resources at a reason-
able cost and there should be no performance bottle necks.

Napster [36, 49] is not considered scalable, since this system relies on a central
server to locate files and this results in a performance bottleneck. This makes
Napster vulnerable since there is a single point-of-failure and it is expensive to
scale the central server. Gnutella [18] displays a limited scalability because of the
extensive use of a broadcasting. The broadcast based protocol also incurs high
bandwidth requirements.

The XML Store, CFS, PAST, FreeNet and OceanStore all scale well, due to the
routing and location schemes that they use.

Availability

The availability of a system and of data, is a measure of the proportion of time that
it is available for use [5].

37

5.1. PEER-TO-PEER SYSTEMS

Freenet is not intended to guarantee permanent file storage – it is hoped that a
sufficient number of peers will join with enough storage capacity so that most files
will be able to remain indefinitely [17].

In OceanStore, CFS and PAST, data are replicated and stored on multiple peers.
This replication provides availability in the presence of network partitions and
durability against failure and attack. A given replica is independent of the peer
on which it resides at any one time. [2, 3, 39]

Presently, the XML Store system does not replicate data, which means that the
degree of availability may not be very high.

Load balancing

Load balancing refers to the problem of spreading data (and requests) evenly among
peers, according to the capacity of the peers.

The Plaxton scheme has good load distribution properties, since identifiers of
data are randomly mapped throughout the infrastructure [45].

Storage of data in CFS is block-oriented – files are split into blocks of a fixed
size. In the XML Store system, files are split into fragments of varying size ac-
cording to the inherent tree structure of the documents. In both CFS and the XML
Store, files are therefore distributed across multiple peers, which increases load
balancing, as popular files are spread across multiple peers, and not placed on a
single hotspot.

PAST, on the other hand, stores whole files. Compared to PAST, the storage
strategies used in CFS and the XML Store, increases file retrieval overhead, since
each file block/fragment must be located by using a separate Chord lookup op-
eration. On the other hand, the storage strategy permits parallel block/fragment
retrievals, which benefits large files. Another advantage of splitting up files is that
files that are too large to be stored at any one peer can be stored as blocks/fragments
if the system as a whole has enough free space [2].

To accommodate peers with heterogenous storage space, CFS introducesvir-
tual servers, thereby hosting multiple logical peers per physical peer [2]. PAST
uses a similar strategy, but to a lesser extent [3].

Anonymity

An important issue in peer-to-peer systems, and particularly in storage and file-
sharing systems, is privacy and anonymity [4]. A provider of storage space used
by others may not want to risk prosecution for content it stores, and clients inserting
or retrieving files may not wish to reveal their identity [4].

Peer-to-peer systems lend themselves naturally to anonymous communication,
as there is no central point at which to collate information about users. However,
careful design choices must be made to ensure anonymity.

One of the main design goals of Freenet is to provide anonymity for both au-
thors and readers of data, i.e. provide a file system that allows files to be inserted,

38

5.2. OTHER RELATED TECHNOLOGIES

stored and requested anonymously [17]. Freenet achieves anonymity by exchang-
ing data via a chain of peers, where no peer except for the recipient is aware of
where the chain terminates. However, the anonymity of Freenet comes at a price
as it limits performance of the system. [2]

Systems like Gnutella, on the other hand, fail to achieve anonymity as peers
connect directly to exchange data, thus revealing their addresses to each other.

The XML Store and CFS do not attempt to provide anonymity. The focal points
of these systems are instead efficiency and robustness [2].

In PAST, users do not need to reveal their identity and the files they are re-
trieving, inserting or storing [4]. Each user holds a public key, which is not easily
linkable to the user’s identity, unless the user voluntarily reveals the binding [4].

Searching

Although hash functions can help place and locate content deterministically, they
lack the flexibility of searching, which is a useful operation to find content without
prior knowledge of exact file names.

Both Gnutella and Napster provide search facilities [18, 36, 49]. They present
a search interface to clients, rather than retrieving uniquely identified data, making
them more like search engines than distributed hash tables. However, Gnutella
searches are based on broadcast which is clearly inefficient and Napster searches
are based on a central server which constitutes a single point-of-failure.

Neither the XML Store nor CFS and PAST provide facilities for searching
[2, 3]. However, Dabek et al. [1] are currently working on making a scalable dis-
tributed search facility for CFS.

Summary of peer-to-peer systems

Table 5.2 gives an overview of the most important properties and features of the dis-
cussed peer-to-peer systems CFS, PAST, OceanStore, Freenet, Napster, Gnutella
and the XML Store.

5.2 Other related technologies

5.2.1 XML databases

Tamino XML Server and Apache Xindice are both centralised, native XML data-
bases. The benefit of storing XML documents in a native XML database compared
to storing them in a relational database is that no conversion of data formats is
necessary. Data are inserted as XML and retrieved as XML. A schema indepen-
dent model employed by both Tamino and Xindice makes it possible to store very
complex XML structures that would be difficult or impossible to map to a more
structured database. [50, 51]

39

5.2. OTHER RELATED TECHNOLOGIES

XML
Store

CFS PAST Ocean-
Store

Freenet Napster Gnutella

Routing &
location

Chord Chord Pastry Tapestry Internal Central
server

Broad-
cast

Determinis-
tic location

Yes Yes Yes Yes No No No

Scalable Yes Yes Yes Yes Yes No Limited

Decentrali-
sed

Yes Yes Yes Yes Yes No Yes

Replication Possible Yes Yes Yes Yes No No

Caching Yes Yes Yes Yes Yes No No

Split up fi-
les

Yes Yes No No No No No

Search fa-
cility

No No No No No Yes Yes

Immutable
data

Yes Yes Yes No – No No

Table 5.2: Features and properties of related peer-to-peer systems. “–” means that no
information about this property was available.

Both applications provide XPath-based query capabilities in combination with
indexing. Tamino also offers text retrieval for searching in non-indexed parts of an
XML document and will support XQuery when it is ratified as a W3C standard.

Since none of the two solutions are distributed, and since queries are not part
of our focus, they will not be discussed further in this thesis.

5.2.2 Peer-to-peer framework

JXTA is a network programming and computing framework for peer-to-peer appli-
cation development [52]. It defines a set of open protocols, that use XML-encoded
messages. JXTA provides protocols and services to implement a full peer-to-peer
application.

To build a peer-to-peer system, JXTA needs an underlying routing and location
scheme, such as Chord. An ongoing projectJXTA Distributed Indexingseeks to
combine Chord and JXTA to provide a distributed index service, which can be used
to index and search content [52].

We have chosen not to build the XML Store on top of JXTA, since we find
that an implementation of the aforementioned protocols is too comprehensive and
restrictive for our purpose.

40

Part II

Analysis & design

41

Chapter 6

XML Store overview

This section provides an overview of the components comprising the XML Store,
and describes the interaction between the parts of the system as well as the inter-
action between an external application and the XML Store system.

Application

DirectoryXML

XML Storage

Distributed Storage

Disk

OS + network

NAME SERVICE

XML STORE

APPLICATION

Figure 6.1:The components of an application utilising the XML Store system and the
four layers of the XML Store component.

Figure 6.1 shows an application utilising the XML Store. There are three main
components, namely Application, XML Store and Name Service. The XML Store
component provides an API for processing and manipulating XML documents, and
offers storage and retrieval of these documents as well. When storing a given doc-
ument the XML Store returns a value reference referring to the document. This
reference can either be stored locally by the application or be associated with a
symbolic name using the Name Service. Other applications interested in the docu-

42

ment can obtain the value reference for a document from the Name Service.

Layer Example Operations
XML Various methods for accessing the children

of an XML element, accessing the con-
tent of a character data node, removing and
adding children.

XML Storage ValueReference save(Node)
Node load(ValueReference)

Distributed Storage save(byte[],ValueReference)
byte[]load(ValueReference)

Disk save(byte[],ValueReference)
byte[] load(ValueReference)
delete(ValueReference)

Table 6.1:Operations of the layers in the XML Store component.

The XML Store can conceptually be considered as consisting of four layers,
each responsible for a clearly defined set of tasks, as shown in 6.1. TheXML layer
models XML documents as an object structure, allowing the programmer to work
with an abstract representation of the document instead of a flat, sequential text
file. The API allows traversal of documents and various methods for modifying
the document, e.g. removing an element, adding an element, replacing an element
etc. The API is value-oriented, so all modifications to a document will result in a
new document containing the changes, with the old document still intact. It also
lets the programmer externalise the document to the typical flat text file format, to
facilitate communication with systems that expect this format.

The XML Storagelayer implements the storage strategy. It is responsible for
converting documents from the XML layer to sequences of bytes that the underly-
ing Distributed Storage layer can understand. The layer converts each node in an
XML document to a byte sequence, and stores the node. When storing a document
a value reference to the document is returned to the application. A document can
only be loaded if you know its value reference.

The Distributed Storagelayer is a peer-to-peer system based on the Chord
protocol [21, 42, 43, 44]. It can be regarded as a distributed hash table that allows
storing and retrieval of values as sequences of bytes associated with a (hash) key in
the form of a value reference. The peer (machine), on which the value is actually
stored, is not known by higher layers.

When the Distributed Storage layer has located the peer responsible for storing
a particular value, it stores the value on that peer using theDisk layer. The Disk
layer simply persists〈byte sequence, value reference〉 pairs to the local file system
for permanent storage.

43

Name Service

TheName Serviceis a simple service mapping symbolic names to value references.
It is completely separate from the XML store, as the XML Store only knows of
values and value references and not of any symbolic names.

Symbolic names can be updated to point to new value references, as it is neces-
sary to have some mechanism for publishing the current version of some document.
To reflect updates we need some way of accessing public and updateable names for
the documents that are published. This is discussed in chapter 10.

Summary

We have now presented an overview of the components comprising the XML Store.
A more detailed discussion of the components can be found in chapter 7 (API
design), chapter 8 (The Chord protocol) and chapter 9 (Value-oriented storage).

44

Chapter 7

API design

In this chapter we describe the value-oriented XML API that has been designed
and implemented for the XML Store. Our goal is to provide a simple and easy-to-
use API that supports value-oriented programming and has the same strength and
applicability as DOM.

We start the chapter by giving a description of the class structure of an XML
document and of the methods in theChildList class. We then describe our adap-
tion of XPath, which is used in utility methods for modifying whole XML docu-
ments. Examples of the use of these methods are also given. Finally we present an
analysis of different ways of representing a child list.

+getValue() : St r i ng
+getChildNodes() : Chi l dLi st
+getType() : shor t
+getValueReference() : Val ueRef er ence

<<i nt er f ace>>
Node

+createElement(St r i ng, Chi l dLi st) : El ement

Element

name : St r i ng
chi l dr en: Chi l dLi st
val ueRef : Val ueRef er ence

CharData

dat a : St r i ng
val ueRef : Val ueRef er ence

+createCharData(St r i ng) : Char Dat a

+size() : i nt
+get(i nt) : Node
+delete(i nt) : Chi l dLi st
+insert(Node, i nt) : Chi l dLi st
+indexOf(Node) : i nt
+append(Node n) : Chi l dLi st
+insertBefore(Node, Node) : Chi l dLi st
+replaceChild(Node, Node) : Chi l dLi st
+delete(Node) : Chi l dLi st

<<i nt er f ace>>
ChildList

*

Syntax

+
-

underline
italics

Meaning

publ i c
pr i vat e
st at i c

abst r act or i nt er f ace

UML syntax

Figure 7.1:The class structure of an XML document as represented in the XML Store.

45

7.1. CLASS STRUCTURE

7.1 Class structure

The proposed API provides a tree-structured abstraction of XML data. An XML
document is represented by the class structure shown in figure 7.1. Since we use
the Minimal XML (see section 4.2) syntax for XML documents only element and
character data nodes are represented.

play

title personae

persona persona

The Tragedy
of Hamlet,
Prince of
Denmark

HAMLET OPHELIA

 Node ch1 = createCharData("HAMLET");
 Node ch2 = createCharData("OPHELIA");
 Node ch3 = createCharData("The Tragedy of Hamlet, " +
 "Prince of Denmark");
 Node persona1 = createElement("persona", new Node[] {ch1});
 Node persona2 = createElement("persona", new Node[] {ch2});
 Node title = createElement("title", new Node[] {ch3});
 Node personae = createElement("personae", new Node[]
 {persona1, persona2});
 Node play = createElement("play", new Node[] {title, personae});

Figure 7.2: Tree representation of the XML document and the Java code necessary to
create this document.

A tree representation of an XML document can be constructed by the opera-
tions createElement() andcreateCharData() and de-constructed or traversed
by getChildNodes() andgetValue() . Figure 7.2 shows a tree representation of
an XML document and the operations necessary for constructing this document.

Instances of the classesCharData andElement can only be created by using
Element.createElement() andCharData.createCharData() . This allows us to
employ hashed consing which ensures that there do not exist two trees or DAGs
in the object structure whose tree expansions are isomorphic, thereby ensuring
maximal sharing.

By employing the strategy shown in figure 7.2 all documents can be created
with createElement() andcreateCharData() . In addition, all forms of manipu-
lations of a document can be performed using these two operations combined with
the de-construction methodsgetChildNodes andgetValue() . A modification of
a document is accomplished by manually traversing the node structure, modifying
nodes and building a new tree accordingly, as explained in chapter 3. Modifying a
large XML document this way is cumbersome, though. We therefore provide the
programmer with methods that ease the modification of XML documents. We first
present the methods of theChildList class.

7.2 Methods for manipulation of child nodes

The methods in theChildList class provides the means to manipulate the child
nodes of an element. Table 7.1 shows the core methods, which are methods from

46

7.2. METHODS FOR MANIPULATION OF CHILD NODES

which all other relevant methods can be created.

Methods Description
int size() Returns the number of child nodes.

Node get(int index) Returns theNode at positionindex .

ChildList insert(Node n, int

index)

Returns a newChildList where n has
been inserted at positionindex .

ChildList delete(int index) Returns a newChildList where the node
at positionindex has been deleted.

int indexOf(Node n) Returns the position of noden in the
ChildList .

Table 7.1:The core methods of theChildList interface.

By combining the core operations shown in table 7.1 it is possible to con-
struct more advanced methods. For instance the Java code for the derived method
insertBefore() is:

ChildList insertBefore(Node newChild, Node refChild) {
return insert(newChild, indexOf(refChild));

}

The rest of the derived methods of theChildList interface are shown in table 7.2.
Notice that all methods in theChildList interface are value-oriented and therefore
result in a new child list containing the changes with the old child list still intact.

Methods Description
ChildList append(Node n) Returns a newChildList where n has

been appended to the end of the child list.

ChildList delete(Node n) Returns a newChildList where noden
has been deleted.

ChildList replaceChild(Node

newChild, Node oldChild)

Returns a new ChildList where
newChild is replaced byoldChild .

ChildList insertBefore(Node

newChild, Node refChild)

Returns a new ChildList where
newChild has been inserted before
refChild in theChildList .

Table 7.2:The derived methods of theChildList interface.

The applicability of the methods in table 7.2 are somewhat limited since they
only offer possibilities for manipulation of the children as single nodes. In order
to provide an API that meets our requirements we offer methods that can manipu-
late an entire document accessed through the root of the document. These utility
methods recursively descent the tree structure and build a new document beginning
from the root element. When they reach the part of the document that should be
modified they use the operations in table 7.1 to manipulate this part of the docu-
ment. The utility methods usecreateElement() andcreateCharData() to build
the new document, thereby ensuring maximal sharing.

47

7.3. OUR ADAPTION OF XPATH

Since the utility methods build the new document starting from the root ele-
ment, we need some sort of path or pattern to specify the navigation from the root
of the document to the node(s) that we want to modify. We choose to use a simpli-
fied and abbreviated syntax of thelocation pathexpression of XPath, explained in
section 4.3, to locate the desired nodes.

7.3 Our adaption of XPath

As described in chapter 4.3 the location path of XPath is a sequence of location
steps separated by a slash (/). A location step has the following syntax:

axis::nodetest[predicate 1][predicate 2]...[predicate N]

When a location path is evaluated each location step in turn selects a set of
nodes relative to the context node and each node in that set is used as a context
node for the following step. An example of a location path is:

child::personae/child::persona[position()=4]

For convenience we have chosen to implement an abbreviated syntax of the
location path that allows common cases to be expressed concisely. Only element
nodes have tag names in our object structure, so we only consider element nodes
when evaluating a location path. Since we make use of sharing of subtrees, parents
and siblings are not uniquely determined. Therefore, we only have thechild axis,
and consequentlychild:: can be omitted from the location step. For example,
a location pathact/scene is short forchild::act/child::scene . Finally, we
only have one kind ofpredicate, namely theposition() operation. Hence, the
text “position()= ” can be omitted from thepredicatepart of the location step, i.e.
act[3] is equivalent toact[position()=3] .

Here are some more examples of the abbreviated syntax:

• */act selects allact grandchildren of the context node.

• act/scene[5]/line[2] selects the second line of the fifth scene of the act
child nodes of the context node.

7.4 Utility methods for manipulation of XML documents

The utility methods for modifying whole XML documents are shown in table 7.3.
Notice that modification applies toall subtrees that match the XPath expression.

The methods in table 7.3 correspond to a minimal subset of the methods offered
by DOM (refer to Le Hors et al. [53] for a full overview of a current DOM imple-
mentation). However, the DOM API is imperative, which means that nodes in the
tree are updated destructively. In contrast we provide a value-oriented API, which,
besides being both simple and as applicable as DOM, allows sharing of identical
subdocuments, eliminates the need of locking mechanisms and forms the basis of
secure and efficient replication and coalescing as well as preserving all previous
versions of a modified document.

48

7.5. REPRESENTING CHILD LISTS

Methods Description
ChildList lookup(Node root,

String path)

Returns aChildList from the document
specified byroot that matches the ab-
breviated XPath expression specified by
path .

Node append(Node root,

String path, Node newNode)

Returns a new document wherenewNode

has been appended to the end of the list
of children of the elements specified by the
abbreviated XPath expressionpath .

Node delete(Node root,

String path, Node oldNode)

Returns a new document whereoldNode

has been deleted from the list of children of
the elements specified by the abbreviated
XPath expressionpath .

Node insertBefore(Node root,

String path, Node refNode,

Node newNode)

Returns a new document wherenewNode

has been inserted beforerefNode in the
list of children of the elements specified by
the abbreviated XPath expressionpath .

Node replace(Node root,

String path, Node oldNode,

Node newNode)

Returns a new document whereoldNode

has been replaced bynewNode in the list
of children of the elements specified by the
abbreviated XPath expressionpath .

Table 7.3:Methods for manipulation of an XML document.

7.4.1 Examples of uses of the API

Consider the XML documentA in figure 7.3 and assume that we have loaded the
root elementplay into the variableplay . Then lookup(play, "personae/per-

sona[2]") will return aChildList with one element, namely thepersona element
that has the character node with contents “OPHELIA” as child (notice that the first
position in an XPath predicate is1).

A new persona element can be inserted before the above foundpersona el-
ement (which we keep in the variableophelia) by executing the following op-
eration:insertBefore(play, "personae", ophelia, horatio) . The resulting
documentA′ is also shown in figure 7.3. As a final example we remove the newly
inserted element:remove(play, "personae/persona[2]") . This results in a
document with a tree representation that is isomorphic to the tree representation
of the original documentA in figure 7.3.

7.5 Representing child lists

When working with an element in an XML document we need to have a way of
accessing and modifying the child nodes of the element. An XML element may
have zero or more children, consisting of either nested elements or character data
blocks. The children of an element are ordered sequentially so it is natural to think

49

7.5. REPRESENTING CHILD LISTS

play

title personae

persona persona

The Tragedy
of Hamlet,
Prince of
Denmark

HAMLET OPHELIA

play

title personae

persona persona
The Tragedy
of Hamlet,
Prince of
Denmark

HAMLET OPHELIA

play

personae

persona

HORATIO

A A A'

Figure 7.3:Tree representation of an XML documentA and the resultA′ of the operation
insertBefore(play, "personae", ophelia, horatio) performed onA.

of them in terms of a list or an indexed array when deciding how to represent
them in the object structure. We have decided to give the user the impression that
she is working with a random access list. As described above the core operations
that must be supported are:get(index) , delete(index) , insert(node, index) ,
size() andindexOf(node) .

These operations are essential as they are used frequently when processing an
XML document, e.g. traversing the structure and accessing the contents of the doc-
ument or modifying the document. The operations must be implemented efficiently
for the proposed API to be useful for working with XML documents.

In this section we focus only on implementing the core operations as the de-
rived operations depend solely on the implementation of the core operations.

We have based the API on the assumption that the user processes the document
one node at a time. Consider the case of a user wanting to create an XML element
having five children. The user constructs the child list by inserting the five children
one at a time. As we work value-oriented a child list cannot be altered – whenever a
change has been made the result is a new child list reflecting the change with the old
one still intact. In the example, in addition to the wanted child list[1,2,3,4,5] ,
the intermediate child lists[1] , [1,2] , [1,2,3] , [1,2,3,4] are also built.

There are several ways to implement the child list and each has its advantages
and drawbacks. In the following we present two different solutions. First a simple
solution based on the use of arrays is sketched. It is easy to understand but has
severe drawbacks in performance. Next we present a solution based on persistent,
balanced trees that offer acceptable performance even when processing elements
with a large number of children. Both solutions are implemented in the prototype
of the XML Store.

We examine the runtime complexity of the core operations in the suggested
solutions and assess the time and space consumption for the scenario of building a
child list with n elements, one element at a time.

50

7.5. REPRESENTING CHILD LISTS

7.5.1 Array solution

In the first solution children are simply stored in an array according to their order.
This obviously makes theget(index) operation very fast (O(1)) as this is merely
a question of accessing the requested position in the array. As the size of the array
is known when it is created and cannot be altered, thesize() operation can easily
be accomplished in constant time.

The operations that modify a child list are unfortunately very slow, when im-
plemented with arrays. Consider the case of an elemente being inserted into a list
xs1 producing a new listxs2. A new array of size(xs1.size() + 1) has to be
created and each child (or more precisely: a reference to each child) inxs1 has to
be copied toxs2 along with the newly inserted child. This obviously takes time
proportional to the number of children (n) in the child list being processed, yield-
ing a complexity ofO(n). Deletion is equally demanding requiring all children
except the deleted one to be copied to a newly created array of size(xs1.size()

- 1) .
Finally, theindexOf() operation requires a linear search of the array, resulting

in a run time ofO(n). Figure 7.4 summarises the runtime complexities of the core
operations in the array based solution.

Operation Runtime Complexity
Node get(int index) O(1)
ChildList delete(int index) O(n)
ChildList insert(Node node, int index) O(n)
int size() O(1)
int indexOf(Node node) O(n)

Table 7.4:Runtime complexity of the core operations for the array based solution.

Now consider the scenario of building a child list withn elements. For the
intermediate child lists we have to create a total ofn arrays of size(1, 2, ..., n).
This leads to aΘ(n2) space consumption [54]. The time spent is also quadratic as
we haven operations of time(1, 2, ..., n) =

∑n
i=1 i = Θ(n2). Though accessing

elements is fast it does not warrant the poor performance when adding or dele-
ting elements. Therefore, the solution is obviously inadequate for processing large
XML documents.

7.5.2 Binary tree solution

The main problem with the former solution is that for each modification of the
child list, all or almost all children must be copied. In this solution we consider
representing the children in a value-oriented binary tree, enabling us to share un-
changed parts of the child list when a modification is carried out. We still present
a list interface to the application programmer, but underneath we maintain a tree

51

7.5. REPRESENTING CHILD LISTS

structure, where the order of the children is reflected by their position in the tree. To
accomplish this, we consider the tree a binary tree that satisfies following property:

Let x be a node in a binary tree. Ify is a node in the left subtree of
x, theny precedes x. If y is a node in the right subtree ofx, thenx
precedes y (adapted from Cormen et al. [54]).

This implies that an in-order traversal of the tree will retrieve the children in
ascending order. As subtrees can be shared, a tree node can reflect one position
in one child list and another position in the context of another child list. This is
shown in figure 7.4 where one tree represents two different child lists. NodeE is
child number five in one child list and child number one in the other. Observe that
this means that although we consider the tree to be a binary search tree, we cannot
store any keys. The position of a child in the child list must be determined solely
by its position in the tree, not by storing indices in the tree nodes.

C

D

E

B GF

A

1

2

3

7

1

3

1

[A,B,C,D,E,F,G]

[F,E,G]

Figure 7.4:Two child lists and their tree representation. Boxes show the size of each sub
tree.

We still need a way to locate node numberi in a given tree, though. By storing
the size of the subtree in each tree node it is possible to determine the order of
the tree nodes (as well as implementing thesize() operation in constant time).
Figure 7.5 shows a simple recursive algorithm,OS-Select , for finding thei’th
element in a tree.OS-Select is adapted from Cormen et al. [54] that use it for order
statistic operations on dynamic sets. Using this algorithm it is easy to implement
theget(index) operation in timeO(h), whereh is the height of the tree.

We have now shown how binary trees can be used for representing ordered
child lists and how identical sublists can be shared by sharing subtrees in the tree
structure. It is quite simple to implement theinsert() anddelete() operations
in a regular binary tree. However, we risk severely unbalancing the tree resulting
in a worst case performance similar to the array solution.

To prevent this, we propose a solution based on value-oriented red-black trees.
Red-black trees are an elegant near-balanced binary tree scheme that guarantees

52

7.5. REPRESENTING CHILD LISTS

OS-Select(x, i)

r = x.left.size + 1;

if (i == r)

return x

elseif i < r

return OS-Select(x.left, i)

else

return OS-Select(x.right, i - r)

Figure 7.5:Pseudo code for finding thei’th element in a tree with root x. The code is
adapted from Cormen et al. [54].

O(log n) worst-case running time of operations such asdelete() and insert() .
Red-black trees arealmostbalanced, in that a red-black tree withn internal nodes
has height at most2 log(n + 1) [54]. A red-black tree must satisfy the red-black
properties [54]:

1. Every node is either red or black.

2. Every leaf is black.

3. If a node is red, then both its children are black.

4. Every simple path from a node to a descendant leaf contains the same num-
ber of black nodes.

Okasaki [55] has described the implementation of red-black trees in a func-
tional and thereby value-oriented setting. We base our implementation on his algo-
rithm as well as on extensions presented by Kahrs [56].

Whenever a modification is made to a value-oriented binary tree a number of
new nodes have to be created to build the resulting tree, as described in chapter 3.
The new nodes that have to be created, correspond to the nodes on the path from
the root of the tree to the place where the modification took place. Worst caseO(h)
new nodes have to be created, whereh is the height of the tree.

When inserting into or deleting a node from a red-black tree, balancing opera-
tions are carried out to maintain the tree’s red-black invariants and thereby keeping
the tree balanced. The balancing operations affect the number of nodes that have
to be created when inserting or deleting and thereby also the time and space com-
plexity of the algorithm on average. In our value-oriented version of the red-black
tree, only a constant number of new nodes are created in each balancing operation,
and the balancing operation is only executed on the nodes on the path from the
modified node to the root of the tree. Most of the time subtrees are simply shared
without the need for creation of new nodes reflecting changes in the tree. So even

53

7.6. SUMMARY

though balancing introduces more changes to the tree than modification of an ordi-
nary binary tree, it still does so to a limited degree. The number of newly created
nodes is still proportional tolog n when modifying a red-black tree, as thus does
not affect the overall runtime complexity.

When implementing the child list in the described way the modification oper-
ations can be accomplished in timeO(log n), as summarised in figure 7.5. The
indexOf() operation requires a search of all nodes in the tree leading to a linear
runtime in the worst case.

Operation Runtime Complexity
Node get(int index) O(log n)
ChildList delete(int index) O(log n)
ChildList insert(Node node, int index) O(log n)
int size() O(1)
int indexOf(Node node) O(n)

Table 7.5:Runtime complexity for the child list solution based on red-black trees.

Returning to the scenario of building a child list withn elements, we obtain
the following space consumption. Each of then operations creates new nodes
proportional tolog n resulting in a total space consumption ofO(n log n). The
runtime complexity of building the child list is alsoO(n log n) due to havingn
operations ofO(log n) time.

The only operation that is not satisfactory in any of the solutions is the
indexOf() operation. It cannot be improved from linear running time unless an
alternate data structure, e.g. a hash table mapping value references to positions,
is maintained for each child list. However, since hash tables are based on arrays,
thedelete(index) andinsert(node, index) operations will have running times
similar to the array based solution (see table 7.4), if indexes are needed for every
child-list. Alternatively, indexes could be build for selected child lists, e.g. when
the creation of the child list is finished or the first time theindexOf() is called.

7.6 Summary

We have presented a way of working with and especially manipulating XML doc-
uments in a value-oriented environment. We have shown how the proposed op-
erations can be implemented with acceptable performance and we maintain the
advantages of working value-oriented in all respects. The proposed API can com-
pete with DOM for applicability and its runtime properties regarding space as well
as time consumption are acceptable for practical use even with very large docu-
ments.

54

Chapter 8

The Chord protocol

When designing a distributed XML Store based on a peer-to-peer network we need
to address the problem of efficiently locating the peer which is either going to be
responsible for a particular piece of data or which is already responsible for the
data. Due to the decentralised nature of a peer-to-peer system, each peer cannot be
aware of all other peers in the system. Consequently a strategy for finding a given
peer based on some criteria is needed.

A number of algorithms have been suggested for solving this problem, as de-
scribed in section 5. One of the most promising is Chord, recently presented by
Stoica et al. [42]. Chord seems well suited for the task of providing distributed stor-
age for the XML Store, as it combines scalability and simplicity and furthermore
is well documented. Note that the Chord protocol uses the termnodeto denote a
peer in the system.

The chapter is structured as follows: Initially the Chord protocol is described
and analysed. The focal points will be the basic Chord operations: How are they
carried out, their properties and how are they accomplished when having limited
knowledge of the other nodes in the system. Then caching, load balancing, fault
tolerance and server selection are described. These techniques are not an indis-
pensable part of the Chord protocol, but have been included in the CFS system [2]
which is based on the Chord protocol. We conclude this chapter by evaluating the
usefulness of the Chord protocol in the context of the XML Store system.

8.1 Chord: A distributed routing and location protocol

The Chord protocol solves the central problem: Given a key, locate the node re-
sponsible for that key. In this respect Chord can be considered a distributed hash
table, where each node is a cell in the table (often called a bucket) that contains
some keys.

The Chord system relies heavily on the use of identifiers consisting ofm-bit
unsigned integers ordered modulo2m, that is, in a circular identifier space. Each
peer and each piece of data is associated with such an identifier, called thekeyand

55

8.1. CHORD: A DISTRIBUTED ROUTING AND LOCATION PROTOCOL

node id, respectively. In typical usage situations the following applies:

nodes ¿ keys ¿ 2m

Chord takes advantage of the fact that both keys and node id’s derive from the
same identifier space in its strategy for assigning responsibility for a given key to a
particular network node.

In the following we will describe how the problem is solved using consistent
hashing, a simple strategy for mapping keys to nodes. This leads to a description
of how the basic operations of the system are implemented and an analysis of the
asymptotic runtime of these operations. Finally we summarise the most important
characteristics of the Chord protocol and discuss what considerations must be taken
into account due to the high degree of concurrency in the system.

8.1.1 Consistent hashing

The Chord protocol maps keys onto nodes in anm-bit circular identifier space,
which is denoted theChord identifier circle[21, 43]. The Chord protocol takes as
input anm-bit key and returns the id of some node on the Chord identifier circle
that holds the corresponding key. The Chord system uses a variant ofconsistent
hashing[57, 58] to map keys to nodes.

Consistent hashing is a hashing technique which is designed to have the same
advantages as standard hashing techniques, i.e. items are distributed evenly over
a number of buckets and hash values are easily computed [54, 58]. Addition-
ally consistent hashing addresses the problem of having a dynamic range of the
hash function (a changing set of cells) [57]. In contrast to standard hashing tech-
niques, different sets of cells do not induce completely different mappings of keys
to cells when using consistent hashing. The mappings are instead “consistent”
which means that for each different configuration of the hash table, the hash func-
tion does not completely reshuffle the mapping of keys to cells.

Consistent hashing can be implemented by mapping keys and nodes to points
on a circle using a base hash function [58]. In Chord this is accomplished by
assigning each node and each key a probabilistic uniquem-bit identifier generated
by a base hash function such as the cryptographic hash function SHA-1 [43, 44].
An identifier for a node is obtained by hashing a unique identifier of the node such
as its IP-address in an Internet environment.

As mentioned above, Chord is based on a variation of consistent hashing. In
consistent hashing, as in a conventional hash table, each bucket has global knowl-
edge of all other buckets. In the Chord protocol the buckets (the Chord nodes)
cannot know all other buckets in the system. The variation thus consists in the
number of nodes that each node must be aware of in the system. Chord improves
the scalability of consistent hashing by avoiding the requirement that every node
must be aware of most other nodes in the system. [2] A Chord node needs only to
be aware of a relatively small number of other nodes – this is described in section
8.1.4.

56

8.1. CHORD: A DISTRIBUTED ROUTING AND LOCATION PROTOCOL

8.1.2 Mapping keys to nodes

A key is mapped to a node id in the following way: A key,k, is mapped to the first
node whose identifier,id, is equal to or followsk in the identifier space (i.e. on the
Chord identifier circle). The node responsible fork is defined as thesuccessorof
k’s identifier [1]. This leads to the following definition of a successor:

Definition The successor of an identifier,i, is the node with the smallest identi-
fier which is greater than or equal toi.

Figure 8.1 shows an example of a Chord identifier circle with a3-bit identifier
space and three nodes2, 4 and7. The three nodes are assigned a set of four keys,
namely{1,4,5,6}. Successors are found in the clockwise direction on the identifier
circle. Since node2 is the successor of key1, key1 is assigned to node2. Similarly,
keys{4,5,6} are assigned to their successor which is4, 7 and7 respectively.

0
1

2

7

3

4

6

5

1

4

65
successor(1)=2

successor(5)=7

successor(6)=7

successor(4)=4

= Node

= No node

= Key

Figure 8.1: Mapping keys and associated values to nodes in a Chord identifier circle.
Numbers (0-7) represent the identifier space. Keys{1,4,5,6} are shown in little boxes next
to the node which they are assigned. This figure is inspired by Stoica et al. [43].

If we assume that node7 had not joined the Chord identifier circle yet, then
the two keys5 and6 would have been assigned to node2 since this node is the
successor of the two keys. The successor of keys{5,6} is found by wrapping
around the identifier circle (see figure 8.2).

8.1.3 Operations in Chord

When describing the operations in Chord we distinguish between the Chordproto-
col and the Chordsystem. The protocol defines a single primitive function,lookup ,
that the operations in the system use. Given a key, the protocol looks up the node
responsible for the key as shown in table 8.1.

57

8.1. CHORD: A DISTRIBUTED ROUTING AND LOCATION PROTOCOL

0
1

2

7

3

4

6

5

1

4

65

successor(5)=2

successor(4)=4

successor(1)=2

successor(6)=2

= Node

= No node

= Key

Figure 8.2:Illustration of how keys and associated values are assigned to nodes in a Chord
identifier circle when wrap around occurs. Numbers (0-7) represent the identifier space.
Keys{1,4,5,6} are shown in little boxes next to the node to which they have been assigned.

On top of this simple operation more advanced operations can be built – this is
called the Chord system. It is easy to implement a distributed hash table supporting
storage and retrieval of〈key,value〉 pairs when you can look up a node given a key.
These operations1 are shown in table 8.2.

Operation Description
lookup(key) Given a key, locate the node responsible for it.

Table 8.1:The central operation of the Chord protocol.

Operation Description
insert(key, value) Inserts a key and its associated value at the

node found bylookup(key) .

get(key) Returns the value associated with the key.

Table 8.2:The operations in the Chord system that maps keys to values.

Furthermore, the Chord system needs to allow nodes to enter and leave the
network. For this purpose two methods are defined as shown in table 8.3.

In the following, we will describe the operationslookup, insert, get, join and
leavein detail.

1In the Chord literature the operation that finds the node responsible for a value and the operation
that loads the value given a key are both calledlookup(key) . To avoid ambiguity we call the
operation loading a value given a keyget(key) .

58

8.1. CHORD: A DISTRIBUTED ROUTING AND LOCATION PROTOCOL

Operation Description
join(node) Causes a node to add itself to the network

via a node that already is in
the network.

leave() Causes a node to leave the Chord network.

Table 8.3:The operations in the Chord system that allow nodes to enter and leave the
network.

Lookup A Chord node can perform a lookup in two ways: by using successor
pointers or by using afinger table.

Chord uses only a small amount of routing information to implement consistent
hashing in a distributed environment – information about successors suffices to
perform a lookup. To look up the node responsible for a key, thelookup operation
searches round the identifier circle via successor pointers until a node that succeeds
the key has been reached – this is where the requested key can be found.

Figure 8.3 shows how a query of key24 is passed on from successor to succes-
sor starting at node3 and finishing at the immediate successor of24 which is the
node with identifier26.

3

5

7

9

12

15

18

20

26

1

24

11

1

18

lookup(24)

Figure 8.3:Illustration of how successors are used to perform alookup operation (key
24 is queried). This Chord identifier circle has a5-bit identifier space. Nodes are marked
with gray dots (1,3,5,7,9,12,15,18,20,26). Keys{1,11,18,24} are shown in little boxes next
to the node which they have been assigned.

Performing lookups by stepping through the Chord identifier circle via suc-
cessor pointers guarantees that the correct node is returned, but this strategy is
inefficient – in the worst case every node needs to be traversed leading to a run
time complexity ofO(N), whereN is the total number of nodes in the system.

To improve the run time oflookup operations, additional routing information
is needed: Every node maintains anm-entry table called thefinger table, where

59

8.1. CHORD: A DISTRIBUTED ROUTING AND LOCATION PROTOCOL

2m is the size of identifier space. The finger table is maintained only to speed up
lookup operations – the information is not essential for correctness as this can be
achieved as long as the successor information is maintained correctly.

The ith entry of the finger table of noden contains the identifier of the first
node,s, which succeedsn by at least2i−1 on the identifier circle [42]. That is:

s = successor(n + 2i−1)

The first entry in the finger table thus contains the immediate successor ofn on
the identifier circle. Note that the finger table is indexed from1..N , not0..N − 1,
so the immediate successor of a node isfinger[1]. The idea of using fingers is
to be able to move faster towards a key that has been queried, instead of simply
traversing every node on the way. When using finger tables the distance to the
key is approximately halved at each step until the node responsible for the key is
reached [43].

As a finger table does not contain information about successors of every identi-
fier, a node may have to pass the request about the successor of a specific identifier,
on to another node which is closer to the identifier. The request is passed on to the
closest finger preceding the identifier.

Figure 8.4 shows how a lookup of key24 is passed on using finger tables,
starting at node3 and finishing at the immediate successor of24 which is26. Only
finger tables of node3 and20 are shown, as these are the only one used in this
query.

The finger table of the node with identifierid = 3 stores information about the
successors of the following identifiers:

(3 + 20) mod 25 = 4
(3 + 21) mod 25 = 5
(3 + 22) mod 25 = 7
(3 + 23) mod 24 = 11
(3 + 24) mod 25 = 19
The successor of identifiers4 and5 is 5, the successor of identifier7 is 7, the

successor of identifier11 is 12 and the successor of identifier19 is 20. Since node
3 does not hold any information about identifier24, the query is passed on to the
closest finger preceding24 which is20, found at entry5.

Figure 8.5 shows the pseudo code for looking up a node responsible for a given
key. The pseudo code uses set notation to denote whether an identifier is between
two other identifiers (square brackets mean inclusive, rounded brackets mean ex-
clusive). Note that the set operations are adapted to the circular identifier space.
This means that the expressions3 ∈ (1, 1), 3 ∈ [1, 1) and3 ∈ (1, 1] all are true – in
Chord the node with id3 isbetween node1 and1. The main loop of the algorithm is
findPredecessor() , that finds the predecessor of the node responsible for a given
key. SinceclosestPrecedingFinger() can never return a node greater thanid,
we will never accidentally overshoot the correct node. The process may under-
shoot though, but the checkid /∈ (n, n.successor] in findPredecessor() en-
sures that we keep trying as long as we can find any successor closer to id. As long

60

8.1. CHORD: A DISTRIBUTED ROUTING AND LOCATION PROTOCOL

3

5

7

9

12

15

18

20

26

1

24

11

1

18

lookup(24) Start Successor

5
7

11

5
7

12
19

4

20

5

Finger table (n=3)

Start Successor

22
24
28

26
26
1

4

21

5

26

Finger table (n=20)

Figure 8.4:Illustration of how finger tables are used to perform alookup operation (key
24 is queried). This Chord identifier circle has a5-bit identifier space. Nodes are marked
with gray dots (1,3,5,7,9,12,15,18,20,26). Keys{1,11,18,24} are shown in little boxes next
to the node which they have been assigned. The finger tables of nodes3 and20 are shown.

as nodes maintain correct successor pointers,findPredecessor() will eventually
succeed, regardless of whether the finger tables are incorrect.

lookup(key)

n = findPredecessor(key);

return n.successor;

findPredecessor(id)

n = this;

while (id /∈ (n, n.successor])

//n = n.successor; // Slow lookups

n = n.closestPrecedingFinger(id); // Fast lookups

return n;

closestPrecedingFinger(id)

for i = M downto 1

if (finger[i].node ∈ (this, id))

return finger[i].node;

Figure 8.5:Pseudo code for the lookup operation

Insert and get These operations make it possible to insert a〈key,value〉mapping
at a node, and to retrieve a value given a key, respectively. Both simply consists of
looking up the node responsible for storing the given key and then executing either
a load or save operation on the node.

61

8.1. CHORD: A DISTRIBUTED ROUTING AND LOCATION PROTOCOL

Join and leave In a dynamic environment nodes can join and leave the Chord
identifier circle at any time.

To simplify thejoin andleave operations each node maintains apredecessor
pointer, a pointer to the node that immediately precedes it. The predecessor pointer
can be used to traverse the nodes on the identifier circle in a counterclockwise
direction.

Whenever a node is joining or leaving the identifier circle this change has to be
reflected in finger tables, predecessor pointers and in assignment of keys to nodes.

If a new node,n, joins the identifier circle,n may have to be added to the
finger table of other nodes on the identifier circle. Therefore, it is necessary to
update finger tables of other nodes on the identifier circle to reflect the joining of
n. It is also necessary to reassign every key whose successor has become the new
noden.

Consistent hashing ensures that a minimal number of keys have to be moved
when nodes join and leave the network. To maintain the consistent mapping when
a node joins or leaves the Chord identifier circle (network), keys may have to be
moved. If a noden joins the identifier circle, keys assigned to the successor ofn
have to be checked to see if they should still be assigned to the successor ofn, or if
they should be moved to the new noden. If a noden leaves the identifier circle, all
of the keys assigned ton are reassigned to the successor ofn. Figure 8.6 illustrates
how keys are reassigned when a node (with identifier6) joins the identifier circle
(figure 8.6,b) or a node (with identifier2) leaves the identifier circle(figure 8.6,c).
Since joining and leaving the Chord identifier circle only introduces movement of
keys between the joining/leaving node and its successor, a complete reshuffling of
keys is not necessary – only anO(1/N) fraction of keys are moved to a different
location, whereN is the total number of nodes in the Chord system. This means
that most keys are mapped to the same node as they were before the change.

8.1.4 Properties of Chord operations

In this section the properties of the Chord operationslookup , join and leave

are described and analysed. Note that all complexity estimates are probabilistic
(expected values) and not upper bounds.

Lookup

In an N node Chord system, each node maintains information aboutO(log N)
other nodes. The information is, as mentioned above, stored in a finger table, and
is used to improve the runtime oflookup operations. Using the finger tables to per-
form a lookup this operation requiresO(log N) messages [43]. If instead a lookup
is performed using successors, the operation requiresO(N) messages.

62

8.1. CHORD: A DISTRIBUTED ROUTING AND LOCATION PROTOCOL

B 0
1

2

7

3
4

6

5

1

4

successor(1)=2

successor(5)=6

successor(6)=6

successor(4)=4

65

1

0
1

2

7

3

6

5

1
4

successor(1)=4

successor(5)=6

successor(6)=6

successor(4)=4

65

4

0

2

7

3
4

6

5

1

4

65
successor(1)=2

successor(5)=7

successor(6)=7

successor(4)=4

C

A

1

Figure 8.6: Illustration of how keys and associated values are reassigned to nodes in a
Chord identifier circle when a node joins (B) or leaves (C) the circle. A represents the
original Chord identifier circle.B represents the Chord identifier circle after a node with
identifier6 joins the circle.C represents the identifier circle after the node with identifier
2 leaves the circle. Numbers (0-7) represent the identifier space. Nodes are marked with
gray dots (2,4,6,7). Keys{1,4,5,6} are shown in little boxes next to the node to which they
have been assigned.

63

8.1. CHORD: A DISTRIBUTED ROUTING AND LOCATION PROTOCOL

Join

Three tasks must be performed when a noden joins the Chord network:

1. Initialise predecessor and finger table ofn (including successor information).

2. Update predecessor pointer and finger tables (including successor informa-
tion) of other nodes to reflect the joining ofn.

3. Transfer keys for whichn is now the successor, from the successor ofn to
n.

Complexity of step 1 Finding and initialising the predecessor of the new noden
takesO(log N) messages, whereN is the number of nodes on the Chord identifier
circle. It takesO(log N) to initialise each entry of the finger table ofn (each
entry is obtained from a lookup operation), and there arem entries in the finger
table. This yields a total ofO(m log N), wherem is the number of bits required to
represent the identifier space andN is the number of nodes on the Chord identifier
circle.

Stoica et al. [42] have shown that the complexity can be reduced toO(log2 N),
if n checks whether theith finger is also the correct(i + 1)th finger for eachi.

Complexity of step 2 The predecessor pointer of only one node needs to be
updated. We need to updateone entry of log N nodes (proved by Stoica et al.
in [44]), and each update takes timeO(log N). This gives us a complexity of
O(log2 N).

Complexity of step 3 Stoica et al. [43] has shown that each node in the Chord
identifier circle is responsible for at most(1+ ε)K/N keys, whereK is the size of
the set of keys. Lewin [58] has shown thatε can be minimised to a small constant,
if each node runsO(log N) virtual nodes, each with its own identifier.

When a node joins the Chord identifier circle,O(K/N) keys have to be moved.

Total complexity of join The above three steps yields a total complexity2 of:

O(log2 N) + O(log2 N) + O(K/N) = O(log2 N + K/N)

2The Chord articles claim a complexity ofO(log2 N), but they only consider how many messages
are needed for re-establishing the routing invariants i.e. each node’s finger table is correctly filled
and each keyk is assigned to nodesuccessor(k), whereas we also take the cost of moving keys into
account.

64

8.2. CACHING

Leave

The analysis of the complexity of theleave operation is similar to the above anal-
ysis of the complexity as ajoin operation and yields the same complexity asjoin .
However, the first step, which initialises the predecessor and finger table of the
joining node, should of course be omitted. The total complexity ofleave is there-
fore equal to the complexity ofjoin , namelyO(log2 N + K/N).

8.1.5 Concurrency

Due to its distributed nature, the Chord protocol needs to be able to handle massive
concurrency as all peers in the system can act simultaneously. Managing concur-
rency is especially important when nodes join and leave the system. Concurrent
joins and leaves from the Chord identifier circle are handled by maintaining the
invariant that every node is aware of its immediate successor (finger[1]) and pre-
decessor, and by allowing the remaining entries of every node’s finger table to
converge to a stable state over time [21].

If two or more nodes with almost similar identifiers are joining the Chord iden-
tifier circle at the same time, inconsistencies can occur since more than one node
may try to notify the same predecessor that they are its new immediate successor.
The method for setting the predecessor ensures that only the node with the low-
est identifier will succeed in notifying the predecessor of itself. The remainder of
the joining nodes will learn their correct immediate predecessor and successor by
periodic calls to thestabilise operation. Thestabilise operation periodically
checks whether new nodes have inserted themselves between a node and its imme-
diate predecessor and successor, when joining the Chord identifier circle [42, 44].
When a noden runs thestabilise() method, it asks its successors for s’s pre-
decessorp, and decides whetherp should ben’s successor instead. This could be
the case ifp had joined the identifier circle very recently. An operation similar to
stabilise periodically updates entries of each node’s finger table, which causes
the tables to gradually converge on correct values after a join [44]. Pseudo code
for the operations is shown in figure 8.7.

8.2 Caching

This section presents the caching strategy used in the CFS system and in XML
Store system, and discusses the advantage of working value-oriented when using
caching. Caching is a standard technique for storing data temporarily to improve
performance of later retrieval. A cache is a small fast storage area holding recently
accessed data, which is designed to speed up subsequent access to the same data
[59]. For instance, caches can be used to hold local copies of data which is acces-
sible over a network. Thereby the need for remote access to data is diminished.

65

8.2. CACHING

stabilise()

x = predecessor.successor;

if (x ∈ (predecessor, this))

predecessor = x;

x = successor.predecessor;

if (x ∈ (this, successor))

successor = x;

fixFingers()

i = 1 < random index <= M

finger[i].node = findSuccessor(finger[i].start);

Figure 8.7: Operations for stabilising the network after concurrent join- and leave-
operations.

Caching strategy

Our caching strategy has been adopted from the CFS system [1, 2]. When a value
is to be retrieved from the XML Store system using a lookup operation, the local
cache is checked to see if the required value is already in the cache. If the value is
in the cache (a cachehit) then it is returned immediately and the lookup terminates.
However, if the value is not cached (a cachemiss) then the lookup operation starts
searching the Chord identifier circle until the requested value has been found. Each
time a server is encountered on the lookup path, the cache of the server is checked
for a cache hit. When the value is found and returned, a copy of the value is saved
in the cache of each of the servers on the lookup path.

LRU caching

As a cache is of a limited size, some sort of mechanism is needed to ensure that the
cache contains “relevant” data. We have chosen to use the same cache replacement
technique as used in the CFS system, namely LRU caching [1, 2]. LRU (Least-
recently-used) caching is one of the most widespread and important replacement
algorithms developed for main memory and disk caching [60]. LRU caching works
in the following way: Recently used data is stored locally in a cache. The cache
is ordered from the most recently used to the least recently used piece of data. As
the cache is filled up with recently used data, the “oldest” cache entries (i.e. the
data which has not been used for the longest time) are discarded, to stay below the
maximum limit [61].

Cache consistency

When working with updateable data, consistency problems might occur, since all
cached copies need to be kept up to date [5]. If the cached copies are not updated
when the original data changes, the value of the cache is greatly reduced. A variety
of cache consistency protocols have been developed to ensure that cached copies

66

8.3. LOAD BALANCING

eventually will reflect changes to the original data, including time-to-live, time
stamping, client polling and invalidation protocols [5, 62].

As described in chapter 3, a characteristic of the value-oriented paradigm is
that values are immutable and therefore cannot be updated. Cache consistency
problems are consequently avoided when working value-oriented.

8.3 Load balancing

Load balancing refers to the problem of spreading data evenly among peers, ac-
cording to their capacity.

In this section we briefly describe how load balancing is handled in the CFS
system, namely partly by means of consistent hashing and partly by means ofvir-
tual servers[1, 2].

Load balancing and consistent hashing

Chord uses consistent hashing to map values to nodes (see section 8.1.1), and
thereby values are spread evenly around the identifier space (the Chord identifier
circle). Files are split up in both the CFS system and the XML Store system, and
thereby file content is spread over many peers. This means that requests for popu-
lar files will affect several peers instead of just a single peer, which provides some
degree of load balancing. It is however, not nearly enough to produce perfect load
balance. Due to the uniform distribution of values every peer in the system stores
roughly the same quantity of data, no matter how much storage capacity each peer
actually has. Furthermore, if the identifier space is large then peers will most likely
be placed at the Chord identifier circle with irregular spacing. This will cause some
peers to get responsibility of a larger amount of data than other peers, even though
data is “uniformly” distributed with consistent hashing. Figure 8.8 illustrates a
Chord identifier circle with nodes of irregular spacing. All keys between X and Y
will be placed at node Y.

X

Y

Figure 8.8: Illustration of a Chord identifier circle with nodes of irregular spacing. All
keys between X and Y will be placed at node Y. Gray dots represent nodes.

67

8.4. FAULT TOLERANCE

Virtual servers

The CFS system seeks to improve load balancing by taking heterogenous peer ca-
pacities and irregular spacing between peers into account. This is accomplished by
using so calledvirtual servers[1, 2]. A single server is configured so that it will
act as multiple virtual servers, thereby taking responsibility for a number of iden-
tifiers and not just one. Introducing virtual servers will increase the total number
of peers on the Chord identifier circle, and the problem of irregular spacing will
consequently be reduced. Each “real” server is configured with a number of virtual
servers corresponding roughly to the peer’s storage capacity, taking heterogenous
capacities into account. A virtual server is identified by the IP address of the real
server combined with the index of the virtual server within the real server.

When introducing virtual servers to the system the number of peers on the
Chord identifier circle is as mentioned increased. To prevent increasing the number
of hops in a lookup operation proportionally, virtual servers on the same physical
machine are allowed to examine each other’s finger tables.

The use of virtual servers however, reduces the advantages of replication to
some extent, as failure of peers are no longer independent. If one physical machine
fails a large group of peers fail simultaneously.

Caching

Together with the use of virtual servers and by spreading blocks evenly across the
network, caching takes part in improving load balancing. By means of caching of
data at an appropriate number of peers, overloading of peers holding popular data
can be further reduced.

8.4 Fault tolerance

In this section we discuss how fault tolerance is handled in the CFS system. Dabek
et al. [1] seek to increase availability and robustness of the CFS system by means
of replication andsuccessor lists. Fault tolerance is not implemented in the XML
Store, but all the described techniques can be applied without modification.

Successor list

To increase robustness, each node in the Chord system maintains a successor list of
sizer. The successor list contains the firstr successors of a node. If the immediate
successor of a node does not respond, the node can use the next “successor” in
its successor list, to be able to perform a lookup. This way the probability of
disrupting the Chord identifier circle is decreased. Actually allr successors would
have to simultaneously fail to disrupt the identifier circle. Dabek et al. [1] suggest
a successor list of lengthO(log N), whereN is the number of nodes on the Chord
identifier circle.

68

8.5. SERVER SELECTION

Replication

To improve availability of data, the CFS system makes use of replication. The
replication scheme from the CFS system [1, 2] is presented below.

Each block of data is replicated onk different servers. The replicas are placed
at thek servers that immediately follow the server where the original piece of data
is stored (i.e. the successor of the id of the data on the Chord identifier circle).
The placement of replicas means that if a servers crashes, the data which is stored
on s is immediately available at the successor server (ss) of s. The successor
server (ss) is able to determine whether it should take responsibility of the data
through examination of its finger table; if the identifier of the data is between the
predecessor ofss andss, thenss should take responsibility of the data. This means
for instance, thatss is now responsible for making replicas of the data.

Since server ids are obtained by hashing the IP address (and possibly an index
if virtual servers are used), servers which are physically close to each other are not
likely to be close to each other on the Chord identifier circle. Therefore data will
most likely survive local network failures due to the replication of data to successor
servers on the Chord identifier circle. This provides an independence of failure to
the CFS system.

The need for multiple replicas of files significantly increases the storage de-
mand. However, since disk space becomes more and more inexpensive, replication
is considered acceptable when wishing to achieve availability and robustness.

Replication and successor lists make sure that a substantial number of nodes
have to crash to make the system lose data or make the routing fail.

8.5 Server selection

In the following section the implementation of server selection in CFS is explained
and discussed. Server selection has been added to CFS to reduce lookup latency
by allowing lookups to preferentially contact peers likely to be nearby in the un-
derlying network [1, 2]. Server selection has not been implemented in the present
XML Store prototype, but can be applied without modification.

Server selection in CFS

To be able to determine which peer is closest, latency estimates are kept at each
peer in CFS. Latencies are measured while building finger tables [1, 2].

When performing afindPredecessor(id) operation the next peer to hop to
is chosen from a set of peers, namely the finger table of the current peer. When
choosing a peer from the set, the choice is based on the latency estimates found at
that peer [1, 2]. Different choices of peers to hop to, will cause the lookup query
to go different distances around the Chord identifier circle.

69

8.6. SUMMARY

Problems regarding server selection

Estimates for latencies which are accurate and at all time up to date would certainly
reduce lookup latency. However, unreliable latency estimates could do more harm
than good by possibly increasing lookup latency. The server selection strategy de-
scribed in the CFS system [1, 2] might disturb theO(log N) run time complexity of
lookup operations. This is due to the fact that choosing a peer from the finger table
based on latency instead of proximity on the Chord identifier circle can potentially
result in a linear run time,O(N), if the chosen peer is always the immediate suc-
cessor. Experimental results have shown that download times are at least modestly
improved when applying server selection [2].

8.6 Summary

In this chapter we have shown that it is possible to build a distributed peer-to-peer
storage area for storing〈key,value〉 pairs using the Chord protocol. This fits the
requirements for a storage layer for the XML Store system very well. The Chord
protocol has two central properties that make it extremely suited for building a
distributed storage area. First of all it is remarkably scalable: Lookup operations
can be achieved usingO(log N) messages, whereN is the number of peers in the
system. This means that lookup operations are feasible even in very large systems
[1, 43]. Secondly, Chord is fully distributed – no node holds more information
than any other node in the system. This decentralisation makes Chord suitable for
peer-to-peer applications – there is no single vulnerable point.

The basic Chord protocol can be extended with features that can improve the
systems performance or increase its stability:

• Improved load balancing usingvirtual servers

• Server selectionto approximate network distance and select the nearest peer

• Caching for faster access to data

• Fault tolerance by maintaining a list of successors

• Availability of data by replication

These features are required to make the system fast and stable in a realistic
setting. It has been shown that it is relatively easy to add techniques for failure
handling and stability to systems built using the Chord protocol without crucial
loss of performance [1, 2].

We have chosen not to focus on failure handling and stability, but to concentrate
on the scalability and decentralisation properties of the system. We will not imple-
ment virtual servers, replication and successor lists. We will implement caching.

70

Chapter 9

Value-oriented storage

This chapter discusses the value-oriented storage strategy. We start with a brief
description of the interaction between theXML Storagelayer and theDistributed
Storagelayer, since this interaction is essential to the storage strategy. Next, value
references and the storage strategy are discussed and finally we analyse different
implementation strategies of theDisk layer.

9.1 XML Storage and Distributed Storage layers

In this section we discuss the interaction between theXML Storagelayer and the
Distributed Storagelayer. Recall that the XML Storage layer in cooperation with
the XML layer offers the application programmer a tree structured object repre-
sentation of XML documents and allows storage and retrieval of these documents.
The Distributed Storage layer consist of a peer-to-peer network based on the Chord
protocol. It works with primitive data-types, offering storage and retrieval of byte-
sequences associated with keys consisting of160-bit unsigned integers.

The main idea is to use the Distributed Storage layer as a service that translates
a location independent value reference to a network route where the value can be
found. The Distributed Storage layer acts as a value-oriented hash table that stores
values (sequences of bytes) associated with value references (keys). Combining the
Distributed Storage layer with the concept of a value reference, makes it possible
to find a certain value regardless of where the value is actually stored. In this way
information is divorced from location.

The Distributed Storage layer is inspired by CFS [2], and even though CFS was
not conceived as a value-oriented file system, but rather aread-onlyfile system, it
does have some value-oriented traits in that the stored blocks of data cannot be
updated or deleted. The Distributed Storage layer has potential to act as a value-
oriented storage layer in many contexts, as the definition of a value (a sequence of
bytes) arguably is the most general possible. This permits all kinds of data to be
stored in value-oriented way, not just XML documents.

71

9.2. VALUE REFERENCES

9.2 Value references

In this section we describe how value references are implemented as160-bit un-
signed integers using cryptographic hashing, making them compatible with the
keys used by the Distributed Storage layer and the Chord protocol. Value refer-
ences play an important role in the XML Store system, so we will look into the
implementation of these in some detail.

In chapter 3 the concept of a value reference was introduced. Recall, that a
value reference is an identifier of an immutable value, with a set of desired proper-
ties outlined in section 3.1.

To obtain a value reference of a value consisting of a finite sequence of bytes,
we use a cryptographic hash function (SHA-1). The basic idea of cryptographic
hash functions is that a hash-code serves as a compact representative image (some-
times called an imprint, digital fingerprint, or message digest) of an input string,
and can be used as if it were uniquely identifiable with that string [63]. SHA-1 is
a one-way hash function that takes arbitrary-sized data and outputs a fixed-length
hash value. A value reference in our system is simply a cryptographic hash value
obtained by hashing the byte representation of the value. Implementing value ref-
erences in this way was suggested by Henglein [9], and the approach is also similar
to the way CFS identifies blocks of data [2], although they do not use the term value
reference.

By implementing value references in the described way, we achieve two of the
desired properties, namely that the value reference is a deterministic function of the
value alone and that the value reference has a limited size. The third desired prop-
erty (a value reference is injective) is impossible to achieve using cryptographic
hashing, as a key has a fixed size and the number of byte-sequences of varying
size is infinite. However, due to the size and nature of the key, a value reference is
unique with very high probability (1− 2−160).

9.2.1 Collisions

Even though a collision is highly unlikely when using a cryptographic hash func-
tion, a collision could nevertheless be catastrophic. It would either lead to critical
data not being stored or existing data being “overwritten”, as data items would be
mistaken for each other due to the identical value reference. There are two solu-
tions to this problem: The first is to ignore the problem because a collision is far too
unlikely to occur. The second is to devise a scheme for detecting collisions. In the
following section we will elaborate on the probability of a collision and describe a
protocol that detects collisions before they occur.

Probability of collisions

Finding out how many different values it takes before the chance of a collision
reaches a certain level is identical to the statistical paradox, known as thebirthday

72

9.2. VALUE REFERENCES

paradox: The probability of finding a matching pair in a given set is far greater
than for finding a match for a given individual [5]. The formula (using Stirlings
approximation) for calculating the number of individuals required to reach a given
probability of a match is: √

π ×M

prob

M is the identifier space (in our case2160) andprob is the inverse probability of a
collision. For instance,prob = 2 means that there is a50% chance of a collision,
whereasprob = 1000 means that there is a0.1% chance of a collision. If we
for example choose to accept a0.1% risk of collision, we can store6.776 × 1022

different values. In the present XML Store prototype we simply choose to ignore
collisions.

Collision detection

Clarke et al. [17] have described a simple technique for detecting collisions. Con-
sider the following scenario: We wish to save a valuev with key (value reference)
k. Before savingv it is checked whetherk is already saved in the system. Ifk
does notexist in the system,v is stored and associated withk in the normal way.
If k, on the other hand,doesexist in the system, the previous value associated
with k is retrieved and compared tov. If the pre-existing value is equal tov then
everything is fine, and the save operation can be considered accomplished – the
value is already in the system and there is no need for saving it again. If a collision
has occurred – that is the pre-existing value differs fromv – some action must be
taken. The obvious solution would be to change the value slightly by adding some
recognisable form of padding. Changing the value results in a different key, as the
key is a content hash of the value. The save operation can now be repeated for a
new〈key,value〉 pair and will have just as high a chance of succeeding as the first
save operation.

As frequent equality testing of large values could prove expensive, optimisa-
tions for determining whether the pre-existing value is equal tov, can be consid-
ered. Instead of comparing the values byte by byte, the length (in number of bytes)
and a prefix consisting of the firstn bytes of the values could be compared. If the
lengths and the prefixes of both values are equal there is a good chance that the
values are indeed equal. This is due to the fact that a cryptographic hash function
often produces very different keys from similar values.

9.2.2 Preventing forging

Using encrypted hash codes allows us to detect forging. When a client requests
the value corresponding to a certain value reference, she can check whether the
actually received value is consistent with the value reference.

73

9.3. STORAGE STRATEGY

9.3 Storage strategy

The XML Storage layer is responsible for storage and retrieval of XML docu-
ments represented as a node structure. In the following we explain how the XML
Storage layer employs the Distributed Storage layer for storage of the XML docu-
ments. The Distributed Storage layer is based on the Chord protocol and offers the
following simple interface that allows the storage and retrieval of byte-sequences
associated with an identifier.

void save(id, byte[])
byte[] load(id)

As previously mentioned, this interface can easily be translated to store〈value
reference,value〉 pairs, with a value reference acting as a Chord identifier associated
with a value.

The strategy for transforming an XML document to one or more byte chunks
is important as the format chosen has severe consequences for the system. It is
of course possible to store an XML document in the usual serialised text format,
but not much would be gained compared to existing technologies such as DOM
and SAX. The document would only be serially accessible as it would have to
be read in its entirety every time it was loaded into the object structure. Identical
parts of the document would not be shared as it would be impossible to identify the
tree structure in a single flat file. In addition, it would be a poor use of the Chord
protocol, that requires files to be split up to help achieve load balancing.

Instead we propose a storage strategy that stores each node as a separate value.
When an XML document is saved the document’s tree structure is traversed and
each node is saved as a separate value. A value reference is generated by hashing
the byte representation of the node and the〈value reference,byte-representation〉
pair is placed on the appropriate Chord server located by the Distributed Storage
layer using the Chord protocol.

For simplicity we use a string based format for representing the nodes as bytes,
even though a binary format might be more efficient. The representation of a node
always begins with a flag indicating the type of the node (<1> for elements,<2>

for character data). A character data node is stored by simply serialising the text it
contains. An XML element is stored as a string containing the name of the element
and the value references to its children. Figure 9.1 illustrates the storage strategy
by showing an XML document and the values that it consists of when stored. Note
that the value references have been simplified to increase readability – they are
normally numbers between0 and(2160 − 1).

9.3.1 Sharing

An important advantage of the suggested storage strategy is that it makes sharing
of identical parts between documents possible. When a document is loaded and
part of it is modified we only have to save the parts of the document affected by

74

9.3. STORAGE STRATEGY

<play>
<title>

The Tragedy of Hamlet,
Prince of Denmark

</title>
<personae>

<persona>
HAMLET

</persona>
<persona>

OPHELIA
</persona>

</personae>
</play>

<1>title<r2>r1:

<2>The Tragedy of Hamlet,
Prince of Denmark

r2:

<1>play<r1><r3>r0:

<1>personae<r4><r6>r3:

<1>persona<r5>r4:

<2>HAMLETr5:

<1>persona<r7>r6:

<2>OPHELIAr7:

Document: Values:

Figure 9.1:Illustration of an XML document and its values when stored in the XML Store
system.

the modification, namely the path from the root to the modification (as described
in chapter 3). The remaining nodes are already stored and there is no need for
storing them again. This optimisation can be implemented by simply adding a flag
to each node indicating whether or not the node is already stored. The flag is set
when the node is stored for the first time or when the node is loaded from the XML
Store, indicating that it is indeed already on disk. If one for example wished to
add information about the playwright of the play to the document in figure 9.1 by
adding<author>Shakespeare</author> to the root element<play> , then both
the title andpersonae subtrees would remain unchanged and would not need
to be stored again. This could potentially save a lot of storage space under the
assumption that most XML documents are copies or slight modifications of other
XML documents.

9.3.2 Lazy loading

Another important advantage of the storage strategy is that it allows the application
programmer to traverse and access parts of a document without loading the entire
document into memory. The title of the play in figure 9.1 can for example be
accessed by traversing theplay/title path, making it unnecessary to load the
entire play including possibly a very large number of lines and scenic descriptions.
The node structure hides this from the application programmer by employing lazy
loading. This is accomplished by letting the child nodes of an element be proxy
nodes that only know their own value reference. When asked for content the proxy
simply loads the actual node.

75

9.3. STORAGE STRATEGY

These two properties combined makes the storage strategy very efficient when
modifying, storing and retrieving large XML documents.

9.3.3 Evaluation of storage strategy

The strategy of storing each node separately is highly efficient for sharing purposes
– identical parts of documents are guaranteed to be shared at node granularity. The
strategy does unfortunately not perform very well as a document is split up into
many small parts that are saved independently. Each separate save operation is
very expensive, due to the network overhead associated with it.

To prevent the document from being split up into too many small parts we sug-
gest an alternate storage strategy, where several nodes are grouped in a single block
of data. Instead of including a reference to the subtree, the byte representation of
the subtree is simply inlined. The tree is traversed in post-order and only when the
subtrees have exceeded a certain limit they are saved. Figure 9.2 shows an XML
document and the values that it consists of when applying this technique.

<play>
<title>
The Tragedy of Hamlet,
Prince of Denmark

</title>
<personae>

<persona>
HAMLET

</persona>
<persona>

OPHELIA
</persona>

</personae>
</play>

<1>title<<2>The Tragedy
of Hamlet, Prince of
Denmark>>

r1:

<1>play<r1><r3>r0:

<1>personae
<<1>persona<<2>HAMLET>>
<<1>persona<<2>OPHELIA>>

r3:

Document: Values:

Figure 9.2:The alternate storage strategy. Nodes are grouped and a certain value-size is
used.

We accomplish our main goal, to decrease the number of save operations re-
quired, by generating fewer and larger pieces of data. We still maintain a tree
structure on disk, but with fewer and larger nodes. This means that we still only
have to change nodes from the place where the modification took place to the root
of the tree. Identical subtrees are still shared, but the amount of sharing is reduced,
because identical nodes that previously would have been shared now can be inlined
in different contexts. The proposed alternate storage strategy has not been imple-
mented in the present XML Store system. Therefore it is hard to tell whether the
strategy has a serious impact on sharing.

76

9.4. DISK HANDLING

9.4 Disk handling

This section analyses different implementation strategies of theDisk layer of the
XML Store system.

The Disk layer of the XML Store must be able to persist〈byte sequence,value
reference〉 pairs to the local file system for permanent storage. The layer must also
support deletion of values, since the Distributed Storage layer requires that values
are moved around when other nodes take responsibility for a value. This leads to
the following simple interface:

Operation Description
void save(byte[], ref) Saves a sequence of bytes associated with the

value referenceref.

byte[] load(ref) Loads a value with the value referenceref and re-
turns the value as a sequence of bytes.

boolean delete(ref) Deletes a value given its value referenceref. Re-
turns a boolean indicating if the deletion was suc-
cessful.

boolean contains(ref) Returns true if the disk contains the value with
value referenceref.

Figure 9.3:Thedisk interface of the XML Store.

9.4.1 Each value in a separate file

One way to implement the above interface is to store each data item of data in a
separate file. This strategy is simple to implement, but also very inefficient, since
many small files cause a large overhead regarding disk space. The minimum file
size on conventional file systems is typically about4 kB, which means that a value
that contains only a few bytes of data takes up4 kB of space on the hard disk. This
strategy is also inefficient time-wise, since the calls to the operating system needed
for creating new files are very expensive.

Given a value reference the disk layer needs a location resolver to locate the
corresponding file. The location resolver can be implemented as a hash table that
maps value references to file names. When a value is saved, the value reference of
the value and the name of the created file are inserted into the location resolver, and
when the value later needs to be loaded, the file name is looked up in the location
resolver using the value reference of the requested value.

The delete() operation can be implemented by deleting the actual file and
removing the corresponding entry in the location resolver table.

77

9.4. DISK HANDLING

9.4.2 Log-structured disk

An alternative to the aforementioned solution is an implementation that is inspired
by a log-structured file system. A log-structured file system does not support saving
a value at a particular place on disk. Instead the system allocates all values in
a sequence in, like in a log [64]. When a value is saved, the system returns a
locator for the value, which can then be used for future retrieval of the value. A
log-structured file system can be simulated on a conventional file system such as
the NT File System (NTFS) by using large random access files, each containing
multiple blocks of data. A locator can be implemented as a pair of integers. The
first integer is an offset to the file position where the value is located, and the
second tells the length of the data in bytes. The relationship between locators and
a random access file is illustrated in figure 9.4.

n1 n2 n3

offset length

RAF

Locators

Figure 9.4: Illustration of how locators are used to locate a file in a random access file
(RAF). n1-n3 illustrates arbitrary sized blocks of data.

In this solution the location resolver is a hash table that maps value references
to locators.

Thedelete operation can be implemented by adding a flag to each entry in the
location resolver indicating whether or not the value is in use. The unused values
can then be removed by a “cleaner”, that is periodically invoked. The cleaner can
be implemented by using thecopying garbage collectionscheme [65].

9.4.3 Our choice of implementation

The implementation inspired by the log-structured file system is obviously the most
efficient of the two sketched solutions, regarding both space and time consumption.
By using this design it is possible to achieve a space consumption competitive to
the size of the typical flat text file format of XML documents, even though we
store each XML document as many small blocks of data. This has been done by
Pedersen et al. [66]. However, since we do not focus on efficient disk handling
in our implementation of the proof-of-concept prototype we choose to save each
value in a separate file.

78

Chapter 10

Symbolic names

To use the XML Store to build useful distributed applications, we need to be able
to associate XML documents with names readable by humans rather than160-
bit numerical identifiers. Clients cannot share particular resources managed by a
computer system unless they can name them consistently. Thus, names facilitate
communication and resource sharing [5].

It should be possible to update the association between a symbolic name and
a document since the entire world is not value oriented: Exchange rates change,
newspapers publish new articles, the weather forecast changes etc. Consider for
instance a weather forecast service: Clients wishing to receive the most recent
weather forecast need to have a way of locating the document representing the cur-
rent forecast. Having a shared, updateable name, such as
xmls://dmi.dk/forecast , makes this possible. Consequently, we need to aug-
ment the XML Store with aName Service, that allows us to associate human read-
able names with XML documents stored in the XML Store.

In this section we initially define the concepts of anameand aname service.
We then describe the Directory, a simple name service used by the XML Store
system. Updateable references shared by multiple clients introduce concurrency
problems. We describe these problems and some possible solutions for handling
transactions. Finally, we suggest how the Chord protocol could be used for imple-
menting a more advanced distributed name service.

10.1 Names and name service

A name is a (preferably human-readable) string that belongs to a givenname space.
A name space is the collection of all valid names recognised by a particular name
service. The association between a name and a resource is called abinding. A
name service stores a collection of one or more naming contexts – sets of bindings
between names and resources. The most central operation a name service supports
is to resolvea name, that is to look up a resource given a name. [5]

You could argue that value references, in a sense, are names for values. How-

79

10.2. THE XML STORE DIRECTORY

ever, value references are not adequate for our purpose for two reasons: First of all,
they areidentifiers, that is, names whose primary purpose is for interpretation by
a computer, and thus not particularly human-readable. Most importantly, though,
they cannot be updated to refer to a different value, as they have an injective rela-
tion to the value that they identify.

Names can bepure, in that they are uninterpreted strings, containing no infor-
mation about the location of the resource.Non-purenames contain some degree of
information about the location of the object they name. Names consisting entirely
of location information are calledaddresses. A Uniform Resource Locator (URL),
as known from the World Wide Web, is an address: It specifies the location of a
particular web page on a specific web server1. Addresses are efficient for access-
ing resources, but as resources are often relocated, addresses are inadequate for
identification. [5]

10.2 The XML Store Directory

In the XML Store system we propose a simple name service, called theDirectory,
that maps names to value references. We have devised the name service so it is
completely separated from the XML Store. The XML Store can function in its
own right, without the Directory. The Directory operations are summarised in table
10.1. Theupdate() -operation will be described in more detail in section 10.3, as
it deals with concurrency problems when performing updates.

Operation Description
void bind(name, ref) throws

NameAllreadyBoundException

Binds a namename to a value ref-
erenceref

ValueReference unbind(name) throws

NoSuchElementException

Removes the binding of a name
name

ValueReference lookup(name) throws

NoSuchElementException

Resolves the value reference bound
to a namename

void update(name, new, expected)

throws ConcurrentUpdateException,

NoSuchElementException

Updates the binding of a name
name from a value reference
expected to a new value reference
new

Table 10.1:The operations supported by the XML Store directory.

To retrieve a given XML document from the XML Store we only need the
value reference of the document. The Chord protocol is responsible for locating
the document in the Distributed Storage layer. By letting the Directory map names
to value references we obtain a pure name space, where the name of a document

1A URL can, however, also be viewed as a non-pure name, since the host name can be resolved
into an IP-address by the DNS.

80

10.3. CONCURRENCY PROBLEMS

is completely independent from the location of the document. This is illustrated in
figure 10.1.

Name Service

<r 15>

<r 34>

<r 12>

…

” Haml et ”

” Ki ng Lear ”

” Ot hel l o”

…

Value ReferenceName

” <1>pl ay<r 1><r 3>…”

<r 15>

<r 34>

Distributed Storage layer

<r 12>

” <1>pl ay<r 64><r 83>…”

” <1>pl ay<r 85><r 23>…”

Maps names to value references Maps value references to values

Maps names to values

Figure 10.1:The Name Service and the Distributed Storage layer.

The underlying Chord identifier space (which also comprises all possible value
references) is flat – it merely consists of numbers between0 and2160 − 1. More
structured naming schemes, such as hierarchical naming, can be imposed upon the
system. The simple name service described, is probably insufficient for building
complex distributed systems, but it nevertheless outlines the kind of interaction
possible between a value-oriented XML store and a name service. The Directory
also makes the entire system vulnerable as it represents a single point-of-failure:
If the Directory for some reason stops responding, all applications using the name
service will no longer work.

10.3 Concurrency problems

Updateable references accessible by multiple clients inevitably lead to concurrency
problems. If the system stores critical data it is important that transactions by
several clients are scheduled so that their effect is serially equivalent.

When a transaction manager is based on a non-value-oriented style of pro-
gramming, the algorithms concerning concurrency and recovery can become very
complex, especially if the transactions are distributed. If updates are allowed the
involved variables have to either be locked while the update takes place, or the con-
tents of the variables have to be copied and remembered so they can be restored
(rolled back) if something goes wrong along the way.

81

10.4. A DISTRIBUTED NAME SERVICE

The value-oriented approach makes it easier to implement a transaction man-
ager. The current value referred to by a variable is not affected by the new value
being built. As the former value always persists, implementing roll-backs is easy.

One of the most common problems is the lost update problem, where data
reaches an inconsistent state due to a process ignoring the modification made by an-
other process [13]. One way to achieve serial equivalence, is to use exclusive locks.
This approach is known as pessimistic locking. It is not very efficient though, as
access to a locked object requires the request to be suspended until the object is
unlocked. Exclusive locks can furthermore result in deadlocks.

Another way to achieve serial equivalence can take advantage of the value ori-
ented model. This approach is called optimistic locking, and is based on the as-
sumption that the likelihood of two clients’ transactions accessing the same value is
low. Transactions are allowed to proceed as if there were no possibilities of conflict
with other transactions until the client completes its task. If a conflict arises, then
one or more transactions are aborted and will need to be restarted by the client. The
optimistic concurrency control is not without flaws, though. The primary drawback
of this method is the risk of starvation, where a process has its transaction aborted
repeatedly.

Optimistic locking in the value oriented model can be implemented as follows:
The state of the system is maintained by an updateable referencestateRef to a
valuev. To update the valuev means computing a new valuev′ and to commit this
update consists of setting the referencestateRef to the new valuev′, which can
be done in a single atomic assignment operation. To abort the update, consists of
doing nothing at all, becausestateRef still points to the original value. Pseudo-
code for theupdate() operation employing optimistic locking is shown in figure
10.2. Note thatmap is a standard hash map, mapping names to value references.

void update(name, newRef, expectedRef)

currentRef = map.get(name)

if (currentRef == expectedRef)

map.remove(name)

map.put(name, newRef)

else

throw ConcurrentUpdateException

Figure 10.2:Optimistic concurrency control in the XML Store.

10.4 A distributed name service

One of the primary problems with the proposed name service, the Directory, is
that it makes the system vulnerable by introducing a single point-of-failure. In this
section we will sketch how the Chord protocol can be used for implementing a

82

10.4. A DISTRIBUTED NAME SERVICE

decentralised name service. This is practical in relation to the XML Store as the
Chord protocol is already implemented. The name service cannot be totally inte-
grated with the existing XML Store though, as the name service requires updates
to data.

The idea is to assign responsibility for a name to a peer, by taking the content
hash of the name. By hashing a name we obtain a Chord identifier (a160-bit key)
and thereby we can assign a node the responsibility for storing information about a
given name, using the Chord protocol’s usual scheme for mapping keys to nodes. A
binding – the association between a name and a document – consists of storing the
Chord identifier obtained from hashing the name, paired with the value reference
of the bound document.

If a given name is to be resolved, the name is hashed to a key and the node
responsible for storing the current value of the binding is looked up using the
Chord protocol, which can be accomplished in expectedO(log N) hops. Con-
sider a client looking to find the document containing the latest weather forecast.
The namexmls://dmi.dk/forecast.xml is hashed to a Chord identifier, and the
node responsible for storing the binding is looked up. The node returns the value
reference of the document containing the current forecast. The client can now use
the value reference obtained, to look up the actual document in the XML Store.

Problems related to updates

The fact that name bindings can be updated introduces complexities and pitfalls
that must be taken into account. When storing the usual〈value reference,value〉
pairs in the Distributed Storage layer, it is assumed that a key will only ever be
associated with a single value. The key is a function of the value and different
values will result in different keys. The deterministic relationship between key and
value is what makes replication and caching simple to implement. However, in
the case of a distributed name service, data is updateable. This makes the Chord
caching strategy useless, unless the application can accept the risk of receiving an
obsolete value reference.

The absence of caching can be tolerated, but it is unacceptable that a binding
is lost if a peer stops responding. Therefore, replication must be implemented in a
distributed name service, but this requires the replication strategy to be augmented
with a coherence protocol.

83

Chapter 11

Network communication

In this chapter we discuss the implementation of the network communication in
the XML Store network. We start by giving a brief description ofremote method
invocation1 (RMI) and then analyse three different implementation strategies of the
request-reply protocol, which RMI is based on.

11.1 Description of RMI

The XML Store network is based on a peer-to-peer system which means that each
XML Store peer acts as both client and server. Because we use object-oriented
programming to implement the XML Store, we choose RMI for communication
between peers. RMI is an extension of local method invocation that allows an
object living in one process to invoke the methods of an object living in another
process possibly running in a different computer. The advantage of using RMI
is that it provides network transparency in the sense that the syntax of aremote
method invocation is almost the same as that oflocal invocation. The only syntac-
tical difference is that a remote method invocation can throw an exception if the
network communication goes wrong.

In RMI, the client (the requesting peer) references aproxy object, which be-
haves like a local object to the client. But instead of executing an invocation, it
forwards it in a message to a remote object on the server peer holding the actual
object. The request message is received by a so calledskeleton, which unmarshals
the arguments in the request message and invokes the corresponding method in the
remote object. The skeleton waits for the invocation to complete and then mar-
shals the result in a reply message to the sending proxy’s method [5]. The role of
the proxy and the skeleton is illustrated in figure 11.1, where ObjectA performs a
remote method invocation on remote objectB .

1Note that we use the termRMI to refer to remote method invocation in general, and not to a
particular implementation, such as Java RMI.

84

11.2. SYNCHRONOUS MESSAGE PASSING

Object A

Proxy for B Skeleton for B

Remote object B

Client Server

Real reference

Networking

Real reference

Virtual
reference

Figure 11.1:Illustration of a remote method invocation.

11.2 Synchronous message passing

RMI is based on therequest-replyprotocol [5], which is depicted in figure 11.2.
Different kinds of implementations of this protocol exist, and we need to find the
implementation that is best suited for the XML Store system. As illustrated in
figure 11.2 the request-reply protocol uses synchronous communication: The client
blocks until the reply arrives from the server.

Suspended
Perform service

Request
message

Reply
message

Client ServerTime

Figure 11.2:The request-reply protocol.

The main design question of the request-reply protocol is whether the server
should use blocking or non-blocking I/O to read the incoming requests. In the
non-blocking version, the server multiplexes asynchronous requests into a single
thread. In other words, the server selects an eligible request from the set of in-
coming requests. This design allows the server to handle thousands of open con-
nections while delivering scalability and high performance. However, some of the
remote method invocations of the XML Store are recursive, meaning that a cycle
of related invocations are possible. Having just one thread handling all incoming
requests might therefore lead to a deadlock.

85

11.3. RMI INVOCATION SEMANTICS

Instead of using just one thread to handle all incoming requests we need to
allocate a separate thread for the execution of each remote invocation. Because of
the overhead caused by thread management, this solution is not as scalable as the
non-blocking solution.

To avoid that an unbounded number of threads are tied up because of missing
reply messages or server crash, waiting threads have to time out. After a timeout
the client peer can take appropriate action by for instance retrying the request.

11.3 RMI invocation semantics

As explained earlier, RMI is an natural extension of local method invocation. Local
invocations are executed exactly once, but because of network failures this might
not always be the case for RMI. There exist different kinds of semantics for the
reliability of RMI as seen by the invoker.

With maybeinvocation semantics, no fault tolerance is applied and the invoker
cannot tell whether a remote method has been executed once or not at all [5]. This
type of semantics can suffer from omission failures if the invocation or result mes-
sage is lost and from crash failures when the server containing the remote object
fails.

With at-least-onceinvocation semantics, retransmission of request messages is
applied and the invoker receives either a result, in which case the invoker knows
that the method was executed at least once, or an exception informing it that no
result was received [5]. At-least-once invocation semantics can suffer from crash
failures and from arbitrary failures, when the remote object executes the method
more than once, because the invocation method is retransmitted.

With at-most-onceinvocation semantics, the invoker receives either a result, in
which case the invoker knows that the method was executed exactly once, or an
exception informing it that no result was received. In this case the method have
been executed either once or not at all [5]. At-most-once invocation semantics
can be achieved by using retransmission of request and results and filtering out
duplicate requests at the server.

The XML Store use TCP/IP as the underlying network protocol and throws an
exception if a network failure occurs. The RMI of the XML Store therefore has
at-least-onceinvocation semantics.

11.4 Asynchronous message passing

Asynchronous request-reply communication is an alternative that is useful in situ-
ations where the client can afford to retrieve the reply later. Instead of waiting for
the reply to arrive, the client proceeds independently of the server. This solution
prevents deadlocks, since the client peer does not block and in addition allows the
server peer to be non-blocking. Observe that the purpose of the waiting thread in
the synchronous solution is to remember what to do with the result of the request.

86

11.5. OUR CHOICE OF IMPLEMENTATION

The thread is simply a continuation for a particular request. Thus, instead of using
threads, the asynchronous solution assigns a peer-unique identifier to each request
made from the peer and keeps a table of outstanding requests: those that have been
sent but for which a reply has not yet been received.

When a reply (with the associated request id) is received, the id and the cor-
responding action are located in the table and removed from it, and the action is
applied to the reply. All replies could be received by a single thread, provided no
actions involve blocking operations. Since the handling of a reply may involve
sending a reply to another peer, replies must be non-blocking.

To implement timeouts on requests, an expiration time is associated with every
request. A separate thread can periodically run through the table of outstanding
requests and remove those that have expired. To do this in an proper way, a request
may have a non-blocking method that can be called upon timeout.

The asynchronous solution can be implemented using UDP as the underlying
network protocol. UDP saves network resources and avoids the expense of setting
up connections.

11.5 Our choice of implementation

In the light of the above analysis, it should be clear that the third solution, the
asynchronous message passing, is the solution that is best suited for the XML Store.
However, the implementation of this solution is complex and error prone, and since
the implementation of the XML Store is only a proof-of-concept prototype we have
chosen to implement the synchronous thread solution. To have complete control of
the network communication we do not use Java’s RMI, but implement a solution
that is custom-made to the XML Store system. The actual implementation and the
classes involved are described in chapter 14.

87

Chapter 12

Security issues

Since any peer-to-peer system is a potential target for malicious attacks, security
measures have to be taken into consideration. In the following we discuss the three
classes of security threats mentioned by Coulouris et al. [5], namelytampering,
leakageandvandalism, in relation to the XML Store system.

12.1 Tampering

Tampering concerns the alteration of data by unauthorised users [5]. In distributed
systems, tampering constitutes a serious risk, due to the importance and intrinsic
value that the data might have to the owners/users of the data. It is therefore im-
portant that vicious individuals cannot destroy data by alteration or corruption – or
at least that tampering can be detected.

Since data that resides in the XML Store is identified according to its content
hash, it is easy to detect whether data has been tampered. When one fetches a piece
of data from the XML Store, one only needs to content hash the received data, and
compare it to the content hash of the original data, to make sure that the data has
not been altered. It is computational infeasible to tamper data, in such a way that
the content hash remains the same as before the data was tampered [63].

Furthermore, distributing multiple replicas of data protects against tampering,
besides making the system more robust. To destroy a given piece of data, a vicious
user must obtain every replica of the data, which means that she needs to know
every server where the data or replica of data is stored. Since a Chord peer cannot
choose its own identifier (recall from section 8.1.1 that the identifier is a content
hash of the peer’s IP address), it cannot choose what data will be stored on it.
Therefore, it is difficult to gain control over a peer that holds a particular piece of
data, and thereby also difficult to tamper a specific piece of data.

88

12.2. LEAKAGE

12.2 Leakage

Leakage concerns the acquisition of data by unauthorised users [5]. When data is
distributed among several peers, we need a way to secure the data from being read
by unauthorised users, to provide a certain degree of confidentiality.

A solution to this confidentiality problem would be to encrypt the data before
saving it in the XML Store. However, encryption of data could interfere with
detection and coalescing of identical data, and thereby cause a loss of sharing.
This is due to the fact that different users most likely use different keys to encrypt
a given piece of data, which usually produces different cipher text.

To overcome the problems regarding detection and coalescing of identical files
when encrypting files using different keys, we have devised a cryptographic tech-
nique calledContent Hash Encryption, which is inspired by theconvergent encryp-
tion technique, proposed by Bolosky et al. [67]. With this approach identical files
will have identical cipher text.

12.2.1 Content Hash Encryption

The main idea ofContent Hash Encryptionis to use the content hash of a value
as a kind of private key. The technique involves two content hashing steps – the
first involving the data to be encrypted, the next involving the encrypted data. To
encrypt a piece of data,d, by usingContent Hash Encryption, five steps has to be
performed. The encryption and decryptionfunctionstakes two parameters as input,
namely the text which is going to be transformed (in our cased or e) and akey(in
our case Key1 or Key2).

1. Content hash (d) = Key1

2. Encrypt (d , Key1) = encrypted data =e

3. Content hash (e) = Key2

4. Save (Key1 , Key2) pair locally

5. Save (Key2 ,e) pair in the XML Store

To decrypt an encrypted piece of data,e, the user must know the content hash
of the original data, i.e. Key1. Decryption of data, then involves the following step:

1. Loade using Key2

2. Decrypt(e , Key1) =d

Since Key1 has to be known to be able to decrypt data, data can be kept con-
fidential in the XML Store system and at the same time, identical data can be
detected and coalesced. The reasons for this are that first of all, Key1 is a one-way
hash of the data, and therefore it is computational infeasible to guess the value of

89

12.3. VANDALISM

Key1 – data is thereby secured from being read by unauthorised users. Secondly,
identical data will get identical cipher text (e) when encrypted with Key1, since
identical data will result in the same Key1. Therefore, Key2 will also be identical
for identical data, since Key2 is a content hash of the cipher text.

To summarise, theContent Hash Encryptiontechnique allows us to restrict
data access via encryption while maintaining sharing of identical data. However,
Content Hash Encryptionis not yet an integrated part of the XML Store system.

12.3 Vandalism

Vandalism concerns the interference with the proper operation of a system [5].
An example of vandalism is denial of service attacks. In distributed systems, it is
important to be able to prevent suchvirus-styleattacks, for instance by disrupting
the attacked service.

The XML Store system is, in its present state, quite sensitive to vandalism.
Vicious users could insert a large amount of data into the system, thereby using up
all the disk space on the XML Store peers. If all disks were full, there would be no
space available for genuine data.

In the PAST system [3, 4] and CFS system [2], quotas are used to restrict the
amount of data that a publisher is allowed to publish. This, however, requires
some sort of reliable identification of publishers. In the PAST system, smartcards
are used to provide this identification of publishers, whereas the CFS system base
quotas on the IP address of the publisher. Quotas are not a part of the XML Store
system yet. Other security measures still need to be considered to prevent vandal-
ism of the XML Store system.

90

Chapter 13

Summary of the analysis

This chapter summarises the theoretical and conceptual properties of the designed
XML Store and compare them to the desiderata from section 1.3.

Properties of the XML Store

The XML Store provides a simple and efficient API for building, manipulating,
storing and retrieving XML documents. The API models XML documents as an
object structure, allowing the programmer to work with an abstract tree represen-
tation of the document instead of a flat, serial text file. It allows the programmer
to traverse and address parts of an XML document and provides various methods
for modifying the document. The API is value-oriented, meaning that sharing of
identical subdocuments is encouraged and all modifications to a document result
in a new document containing the changes with the old document still intact. All
the core operations of a child list of sizen can be accomplished in timeO(log n),
except theindexOf() operation which has a worst case run time ofO(n). The API
uses an abbreviated syntax of XPath, which is used in utility methods for modi-
fying entire XML documents, thereby relieving the application programmer from
modifying large XML documents manually.

The distributed storage layer of the XML Store is based on the Chord pro-
tocol, which allows〈value reference,value〉 pairs to be stored and retrieved in a
distributed peer-to-peer system. The Chord protocol is highly scalable since the
lookup operation operates in time logarithmic in the number of servers and only
requires logarithmic routing information at each peer. Furthermore, by using the
Chord protocol the XML Store becomes decentralised, self-organising and pro-
vides some degree of load balancing.

We apply a cryptographic hash function as the value reference of a value, and
we thereby obtain a value reference that is both deterministic, injective, hard to
forge and with a very high probability unique.

When saving a document we split it up according to its inherent tree structure
and store each node separately. This way we achieve a tree structured storage for-
mat on disk. Because of this storage strategy and because we work with immutable

91

values, sharing of subdocuments is possible. Sharing makes updating of already
stored documents very efficient since only the changed parts need to be stored, not
the entire document. Furthermore, due to the storage strategy we can employ lazy
loading when loading a document, and we thereby avoid the necessity to load and
parse the entire document when accessing parts of it.

Value-oriented programming in a distributed environment

The value-oriented programming model used by the XML Store presents simple
solutions to central problems of distributed systems.

Easy replication and caching Working with immutable data requires no cache
coherence protocol and the immutable data can be freely replicated and coalesced
without the need of complex replication protocols.

Atomic updates Since value-oriented programming keeps both the updated and
the original version when data is modified the atomic update property of transac-
tions is easily accomplished and recovery algorithms are not necessary.

The XML Store properties compared to the desiderata

The XML Store has the following desired properties:

• No single point of failure

• Scale gracefully

• Load balance

• Self-organising

• Simple

• Efficient XML processing

• Applicable API

By building the XML Store on top of a peer-to-peer system based on the Chord
protocol we automatically achieve the desired properties:No single point of failure,
Scale gracefully, Load BalanceandSelf-organising. Presently, the XML Store are
not Fault tolerantandAvailablesince replication and successor lists are not yet
implemented. However, the XML Store could easily be augmented to contain these
features, as done in the CFS system [2].

During the design of the XML Store we have given high priority to the cen-
tral properties of peer-to-peer systems, namely decentralisation and scalability. In
theory, the performance of the storing and retrieval operations of the XML Store is
therefore poor compared to the performance of reading from and writing to local

92

disk. The proposed storage strategy is efficient for loading large documents and
updating already stored documents. However, due to the network overhead asso-
ciated with a save operation, it is highly inefficient to store each node separately.
Since both the XML Store and CFS system [2] are based on the Chord protocol,
the XML Store should be able to achieve the same performance as CFS, which
has download speeds competitive to FTP. However, with the present storage strat-
egy such a performance is presumably not possible and another storage strategy
should be employed as suggested in section 9.3.3. To achieve the desired perfor-
mance, another implementation of the network communication is also necessary,
e.g. asynchronous request-reply communication based on the UDP protocol.

A well-designed heuristic for accessing peers according to network proximity
might speed up network access. In contrast to Chord, several routing and location
schemes, such as Plaxton [45], Tapestry [47] and Pastry [22], attempt to approxi-
mate real network distance. It is possible to augment the XML Store system with
a network locality heuristic as done in the CFS system.

As a consequence of working value-oriented the XML Store isSimpleand
hasEfficient XML processing. The latter property is also acquired because we
use a value-oriented red-black tree to represent the child list of an XML element.
Furthermore, by providing a value-oriented API that is both simple and as versatile
as DOM the XML Store obtain the desired property of anapplicable API.

Security issues are not implemented in the XML Store. However, in chapter 12
we presented an encryption strategy, Content Hash Encryption, that makes it pos-
sible to encrypt values and still maintain sharing, thereby preventing unauthorised
user from reading the contents of values (Leakage). Furthermore, it is difficult
to tamper data that resides in the XML Store in a way that makes it hard to de-
tect whether the data has been tampered (Tampering). However, we still need to
consider security measures for preventingVandalism.

The XML Store does not have a search facility nor does the it support queries.

93

Part III

Implementation & evaluation

94

Chapter 14

Implementation

In this chapter we describe the overall structure of the prototype implementation of
the XML Store. The purpose of this section is not to describe the code in detail, but
to grant the reader an overview of the program. The diagrams will not include all
classes and the depicted classes will not feature all fields and methods – only parts
central to the understanding of the system are shown. The diagrams conform to the
UML standard, but as there exists many different “flavours” of UML, especially
when depicting methods, we briefly describe the subtleties in table 14.1.

Initially we describe how the layers introduced in chapter 6 are implemented.
We then describe the implementation of the network communication and finish by
giving an example of how an application programmer can build a system using
the XML Store and associated XML API. The source code can be found in the
appendix as well as on the web at
http://www.it-c.dk/people/fenne/xmlstore/src.zip .

14.1 The XML Store Layers

As previously mentioned, the XML Store can be regarded as consisting of various
layers, each responsible for a specific set of tasks. Note that the layers are a con-
ceptual model – the current XML Store implementation is not entirely layered. The
Distributed Storage layer and XML Storage layer are for instance tied together us-
ing inheritance. We still present the program in the context of these layers, to help

Syntax Meaning
+ public

- private

underline static

italics abstract or interface

Table 14.1:Our adaption of syntax for methods in UML-diagrams.

95

14.1. THE XML STORE LAYERS

clarify the responsibilities of the classes and modules of the system.

14.1.1 The XML Layer

The classes comprising the XML layer are placed in package
edu.it.xmlstore.xml . Most classes represent parts of an XML document – these
include interfaceNode and its derived classesCharData andElement , as shown
in figure 14.1. They offer methods for manipulating XML documents in a value-
oriented way.

+lookup(Node r oot , St r i ng pat h) : Chi l dLi st
+removeNode(Node r oot , St r i ng pat h, Node ol dNode) : Node
+append(Node r oot , St r i ng pat h, Node newNode) : Node
+insertBefore(Node r oot , St r i ng pat h, Node r ef Node, Node newNode) : Node
+replace(Node r oot , St r i ng pat h, Node ol dNode, Node newNode) : Node

XmlHome

+getValue() : St r i ng
+getChildNodes() : Chi l dLi st
+getType() : shor t
+getValueReference() : Val ueRef er ence
+accept(NodeVi si t or v i s i t or)

<<i nt er f ace>>
Node

*

Element

name : St r i ng
chi l dr en: Chi l dLi st
val ueRef : Val ueRef er ence

+createElement(St r i ng name,
Chi l dLi st chi l dr en) : El ement

+createElement(St r i ng name, Node[]
chi l dr en) : El ement

CharData

dat a : St r i ng
val ueRef : Val ueRef er ence

+createCharData(St r i ng dat a) : Char Dat a

Figure 14.1:Node, Element andCharData represent (parts of) XML documents. This
is an example of the Composite design pattern.

CharData andElement cannot be instantiated using thenew keyword. They
are instead created usingElement.createElement() and
CharData.createCharData() . This allows us to employ hashed consing to never
instantiate two identical objects, thereby ensuring maximal sharing.

The children of an element are represented by interfaceChildList and its
subclassRbTreeChildList . RbTreeChildList contains private inner class
RbTreeChildList.TreeNode , that represents the child list as an approximately
balanced red-black tree. This is shown in figure 14.2.

The layer also provides utility methods for parsing XML files in flat text format
to object representation (Element.createElementFromFile()), and externalise
object representation of XML document to text format (Node.asString()).

96

14.1. THE XML STORE LAYERS

The XML documents can of course be manipulated manually by traversing the
node structure, adding, deleting or replacing nodes and building a new document
accordingly. To make common tasks easier we offer a number of utility methods
for modifying whole documents. These are collected in classXmlHome.

+size() : i nt
+get(i nt i) : Node
+delete(i nt i) : Chi l dLi st
+insert(Node n, i nt i) : Chi l dLi st
+indexOf(Node n) : i nt

+append(Node n) : Chi l dLi st
+insertBefore(Node newChi l d, Node r ef Chi l d) : Chi l dLi st
+replaceChild(Node newChi l d, Node ol dChi l d) : Chi l dLi st
+delete(Node n) : Chi l dLi st
+iterator() : I t er at or

<<i nt er f ace>>
ChildList

RbTreeChildList

r oot : Tr eeNode

si ze : i nt
l ef t : Tr eeNode
r i ght : Tr eeNode
col or : bool ean
node : Node

RbTreeChildList.TreeNode

+select(Tr eeNode x, i nt i) : Tr eeNode
+insert(Tr eeNode x, Node newNode, i nt i) : Tr eeNode
+delete(Tr eeNode t , i nt i) : Tr eeNode

*

Figure 14.2:ChildList , RbTreeChildList andRbTreeChildList.TreeNode rep-
resent the children of an element.

14.1.2 The XML Storage layer

The interfaceXmlStoreServer and its implementationXmlStoreServerImpl , in
packageedu.it.xmlstore , represents a single peer in the XML Store system.
TheXmlStoreServer allows the client to save and load XML documents from the
XML layer and is responsible for all interaction with the Distributed Storage layer.
The XmlStoreServer implements the storage strategy, deciding in which way to
transform a given document to one or more byte-sequences to be stored. Figure
14.3 shows the interaction betweenXmlStoreServer , XmlStoreServerImpl and
XmlStoreServerHome .

The classXmlStoreHome is a helper class containing methods to get the system
started. It provides methods for making initial contact with another server and
locating the name service, both by using IP multicast. See section 14.4 for a more
detailed description of how to useXmlStoreHome .

A value reference is represented by the simple interfaceValueReference , and

97

14.1. THE XML STORE LAYERS

is used throughout all layers of the system, except for the Distributed Storage
layer. The actual implementation ofValueReference is ChordIdImpl , see sec-
tion 14.1.3.

<<i nt er f ace>>
XmlStoreServer

+save(El ement el ement) : Val ueRef er ence
+load(Val ueRef er ence r ef) : Node
+saveValue(byt e[] val ue, Val ueRef er ence key)
+loadValue(Val ueRef er ence key) : by t e[]
+saveToDisk(byt e[] val ue, Val ueRef er ence r ef)
+loadFromDisk(Val ueRef er ence key) : byt e[]
+moveKeys(Xml St or eSer ver p)
+moveAllKeys(Xml St or eSer ver p)
+join(Xml St or eSer ver n)
+getAddress() : I net Socket Addr ess

+lookupExternalServer(i nt por t) : Xml St or eSer ver
+lookupNameService(i nt por t) : Di r ect or y
+createAndJoin(i nt por t , Xml St or eSer ver ext Ser ver) : Xml St or eSer ver

XmlStoreHome

XmlStoreServerImpl

- addr ess : I net Socket Addr ess
- por t : i nt

Figure 14.3: XmlStoreServer , XmlStoreServerImpl and XmlStoreServerHome

comprise the XML Storage layer.

14.1.3 The Distributed Storage layer

The Chord protocol is implemented in classChordNodeImpl derived from interface
ChordNode , both in packageedu.it.xmlstore.chord . This class contains the
basic Chord functionality such as joining and leaving a Chord ring, and looking up
a node responsible for an identifier.

The Chord identifiers are represented by classesChordId andChordIdImpl .
These classes encapsulate the handling of 160-bit integers and makes sure that all
arithmetic is modulo2160. Value references and Chord identifiers are almost alike,
but we nevertheless have different interfaces for them, though both interfaces are
implemented by the same class. This is due to some subtle differences: A value
reference only needs to be checked for equality, whereas a Chord identifier needs
to be able to handle arithmetic with other Chord identifiers as well as more detailed
comparison operators. TheChordId interface is used instead of value references in
the Distributed Storage layer.

98

14.1. THE XML STORE LAYERS

+serverId() : Chor dI d
+predecessor() : Chor dNode
+setPredecessor(Chor dNode pr edecessor)
+successor() : Chor dNode
+setSuccessor(Chor dNode n)
+lookup(Chor dI d key) : Chor dNode
+findSuccessor(Chor dI d i d) : Chor dNode
+findPredecessor(Chor dI d i d) : Chor dNode
+closestPrecedingFinger(Chor dI d i d) : Chor dNode
+join(Chor dNode n)
+leave()
+updateOthers(Chor dNode n)
+updateFingerTable(Chor dNode s, i nt i)
+removeFromOthers()
+removeFromFingerTable(Chor dNode s, i nt i)
+notify(Chor dNode n)
+stabilize()

<<i nt er f ace>>
ChordNode

ChordNodeImpl

- ser ver I d : Chor dI d
- f i nger : Fi nger Ent r y[]
- pr edecessor : Chor dNode

+toBytes() : byt e[]
+compareTo(Obj ect t hat) : i nt
+equals(Obj ect t hat) : bool ean
+lessThan(Obj ect t hat) : bool ean
+lessThanEqual(Obj ect t hat) : bool ean
+greaterThan(Obj ect t hat) : bool ean
+greaterThanEqual(Obj ect t hat) : bool ean

+add(Chor dI d ot her) : Chor dI d
+subtract(Chor dI d ot her) : Chor dI d
+pow(i nt exponent) : Chor dI d

<<abst r act >>
ChordId

ChordIdImpl

- val ue : Bi gI nt eger

Figure 14.4:ChordNode andChordNodeImpl comprise the Distributed Storage layer,
making use ofChordId andChordIdImpl to represent Chord identifiers.

14.1.4 Storage layer

The Storage layer consists of the classes in packageedu.it.xmlstore.storage ,
and is responsible for storing values locally (see class diagram in figure 14.5). The
interfaceDisk and its derived classMultiFileDisk store values permanently on
disk. TheDisk interface simply maps value references to values – the client has
no influence on how the files are stored or where. More efficient disk handling can
easily be incorporated into the system by adding another implementation of the
Disk interface.

The layer also has interfaceCache and derived classLruCache for temporary
caching of values.LruCache uses the least-recently-used strategy to determine
which values should be deleted when the cache is filled up.

14.1.5 Name service

The Name Service cannot really be considered a layer, as it exists as an external
service to the XML Store. The XML Store never uses the Name Service – it is the
client that employs the service, to associate value references with human-readable
names. The simple proposed name service has interfaceDirectory , is imple-
mented in subclassDirectoryImpl and summarised in figure 14.6. All classes
related to the directory are located in packageedu.it.xmlstore.directory .

99

14.1. THE XML STORE LAYERS

<<i nt er f ace>>
Disk

+save(byt e[] val ue, Val ueRef er ence r ef)
+load(Val ueRef er ence r ef) : byt e[]
+delete(Val ueRef er ence r ef) : bool ean
+contains(Val ueRef er ence r ef) : bool ean

MultiFileDisk

<<i nt er f ace>>
Cache

+put(byt e[] val ue, Val ueRef er ence r ef)
+get(Val ueRef er ence r ef) : byt e[]
+contains(Val ueRef er ence r ef) : bool ean

LruCache

Figure 14.5: Disk and MultiFileDisk provides persistent storage,Cache and
LruCache provide temporary caching.

<<i nt er f ace>>
Directory

+bind(St r i ng name, Val ueRef er ence r ef)
+unbind(St r i ng name) : Val ueRef er ence
+lookup(St r i ng name) : Val ueRef er ence
+update(St r i ng name, Val ueRef er ence newRef , Val ueRef er ence expect edRef)

DirectoryImpl

-di r ect or y : Map

Figure 14.6:Directory andDirectoryImpl constitutes a simple name service.

100

14.2. XMLSTORESERVER

14.2 XmlStoreServer

This section will describe in more detail the classes that make up an XML Store
server. The classChordNodeImpl contains only the functionality required for han-
dling joining, leaving and looking up a node given an id. TheXmlStoreServerImpl

extendsChordNodeImpl as shown in figure 14.7, gaining access to the routing al-
gorithms and supplying such functionality as storage of values. Where needed,
e.g. when joining and leaving,XmlStoreServerImpl overrides the original meth-
ods to add special behaviour. Other applications wishing to use the Chord routing
algorithm can likewise extend classChordNodeImpl .

ChordNodeImpl

XmlStoreServerImpl

+save(El ement el ement) : Val ueRef er ence
+load(Val ueRef er ence r ef) : Node
+join(Xml St or eSer ver n)

<<i nt er f ace>>
XmlStoreServer

+lookup(Chor dI d key) : Chor dNode
+join(Chor dNode n)
+leave()
+stabilize()

<<i nt er f ace>>
ChordNode

DiskCache

Figure 14.7:Class diagram illustrates the relationship betweenXmlStoreServer and
ChordNode .

14.3 Network communication

Communication from peer to peer is essential to the system and very complex due
to the recursive nature of the Chord protocol. The design of the communication be-
tween peers is one of the most complicated parts of the program. It has substantial
influence on the overall performance of the XML Store system.

The design is inspired by RMI as described in section 11.1 and relies heavily
on the use of proxies, abstracting the actual network communication from the ap-
plication programmer. We have emphasised that the design uses interfaces heavily,
and designed the interfaces so it is easy to extend the system with more efficient
implementations.

We use the classes in packageedu.it.xmlstore.rpc , and the relationship
between these classes is shown in figure 14.8.

101

14.3. NETWORK COMMUNICATION

<<i nt er f ace>>
MessageDispatcher

+r ecei ve(Message message)

XmlStoreMessageDispatcher

Thread

MessageReceiver

+serve()
+run()

- c l i ent Connect or : Ser ver Socket
- por t : i nt

DirectoryMessageDispatcher

<<interface>>
XmlStoreServer

<<interface>>
Directory

- di r ect or y : Map

DirectoryImplXmlStoreServerImpl

- addr ess : I net Socket Addr ess
- por t : i nt

ClientThread

+run()

+getMethod() : byt e
+getSocket() : Socket
+nextArg() : byt e[]

Message

- c l i ent Socket : Socket
- met hod : i nt
- number Of Ar gument s: byt e
- ar gLengt hs : i nt []

XmlStoreServerProxy DirectoryProxy

Communicates
with MessageReceiver

Communicates
with MessageReceiver

Creates message

Figure 14.8:The classes used for network communication.

102

14.4. BUILDING APPLICATIONS USING THE XML STORE

In figure 14.9 we present a sequence diagram of a single remote method invoca-
tion to give an overview of the interaction between the involved classes. The figure
depicts the situation whereXmlStoreServerImpl A wants to invoke the method
findSuccessor(id) on XmlStoreServerImpl B. The remote method invocation
is performed byA calling a proxy,XmlStoreServerProxy for B. The proxy then
marshals the argument,id , and forwards the method invocation to the realB using
a socket connection. The call is received by aMessageReceiver , which creates
a new instance of theClientThread class for each incoming request. When the
ClientThread has received the entire request it creates a newMessage object and
passes it on to theXmlStoreMessageDispatcher . TheXmlStoreMessageDispat-

cher performs the role of the skeleton, as described in section 11.1. It determines
the type of method, unmarshals the argument and calls thefindSuccessor(id)

method onXmlStoreServerImpl B. TheXmlStoreMessageDispatcher then mar-
shals the result and sends it back toXmlStoreProxy , which unmarshals the result
and returns it toXmlStoreServerImpl A.

XmlStoreServerImpl
A

XmlStoreProxy XMLStoreMessage
Dispatcher

findSuccessor(id)

accept()

MessageReceiver

start()

ClientThread

receive(message)

sendReturnValue()

XmlStoreServerImpl
B

findSuccessor(id)

new

Note:
This is not a method

call, but network
communacation.

Note:
This is not a method

call, but network
communacation.

Figure 14.9:Sequence diagram of a remote method invocation.

Notice that the network communication between an XML Store and the name
service (Directory) is handled in the same way as illustrated in the above sequence
diagram. However, instead of using theXmlStoreMessageDispatcher , the name
service usesDirectoryMessageDispatcher and DirectoryProxy to invoke the
requested method on the actualDicectoryImpl object.

14.4 Building applications using the XML Store

This section will describe how to use the XML Store, from an application program-
mers view.

103

14.4. BUILDING APPLICATIONS USING THE XML STORE

The client can create and manipulate XML documents by using the classes
in the packageedu.it.xmlstore.xml . Consider a client wishing to produce the
following XML fragment, representing a famous line from a play by Shakespeare:

<SPEECH>
<SPEAKER>

KING RICHARD III
</SPEAKER>
<SPEECH>

A horse! a horse! my kingdom for a horse!
</SPEECH>

</SPEECH>

The above could be constructed in the following way:

Node speaker = Element.createElement("SPEAKER",
new Node[] {
CharData.createCharData("KING RICHARD III")});

Node line = Element.createElement("LINE",
new Node[] {
CharData.createCharData(
"A horse! a horse! my kingdom for a horse!")});

Node speech = Element.createElement("SPEECH",
new Node[]{newSpeaker, newLine});

If the above XML fragment was stored in a regular text file called “doc.xml”,
the document could be constructed using a method that parses the file toNode

representation:

Node speech = Element.createElementFromFile("doc.xml");

To store the document in the peer-to-peer network we need to start an XML
Store server. For a client or an upper application layer the XML Store server is
accessible through the interfaceXmlStoreServer , which defines methods such as
save() , load() , join() andleave() . XmlStoreHome defines helper methods for
initialising an XML Store server. Clients wishing to join the XML Store network
simply callXmlStoreHome.createAndJoin() to have anXmlStoreServer instan-
tiated and joined the peer-to-peer network. The document can then be saved. The
following shows the above document being saved. Note thatport can be any un-
used port in the system.

int port = 6001;
XmlStoreServer server = XmlStoreHome.createAndJoin(port);
ValueReference ref = server.save(speech);

The client can associate the value reference with a human-readable name using
the Directory. This makes the value reference available for later retrieval and makes
the document available to other interested parties. The following code fragment
binds the above document (actually the document’s value reference) to a name.

104

14.4. BUILDING APPLICATIONS USING THE XML STORE

String name = "Quote of the day";
Directory directory = XmlStoreHome.getDirectory(port);
directory.bind(ref, name);

For a more extensive example of how to build applications using the XML
Store, see the email application in packageedu.it.xmlstore.mail .

105

Chapter 15

Test

This section briefly discusses possible test strategies and present the test strategy
used when implementing the XML Store system and the distributed e-mail appli-
cation. The focal point will be systematic software test.

15.1 Systematic test

A program is tested to substantiate that it is correct and satisfactory, meaning that
there should not be any errors in the program. To substantiate whether a given
program works properly, a systematicinternal or externaltest of the program can
be made.

An internal test(also known aswhite-boxtest orstructural test) is used to
discover “logical” errors in a program, i.e. errors in the structure of the program,
such as sequences that are never executed etc. Thus, in an internal test, all parts
of a program must be examined. This means that all methods must be called and
within each method every loop (for andwhile) and branch (if andswitch) must
be executed. To accomplish this, the test suite should contain a sufficient amount
of input data. To be able to check the actual output, the expected output must be
specified for every input data set, so that it can be compared to the actual output.
For large programs, an internal test may be very time consuming.

External test(also known asblack-boxtest orfunctional test) is used to test
the functionality of a program. That is, to make sure that the program works as it
should. In an external test, the program is viewed as a black-box. The only thing
of interest is input data and output data of the program – not the internal structure
of the program. To make an external test of a program, a test data set consisting
of “typical” and “extreme” input values and corresponding expected output values
is constructed. The expected output values are then compared to the actual output
values.

Internal tests and external tests are complementary. The two types of test are
used for different purposes – one does not cover the other.

106

15.2. AUTOMATIC TEST

15.2 Automatic test

Automatic test is a way to ensure that a program is continually tested. This makes
it easier to discover newly introduced errors, since the program is tested every time
code has been added, deleted or modified. To be able to automate tests, each test
should be isolated from the other tests. Thereby, one avoids that if one test fails, it
does not cause other failures as well.

15.3 Test of the XML Store system

During the course of implementing of the XML Store system, we have used auto-
matic unit tests to test each class of the system. Our unit tests can be considered an
external test of the system. We have made test-suites for every class and (nearly)
every method in the program. These test-suites contain typical as well as extreme
input data and for each test case we have specified the expected output value. The
test suites are automatically run every time the program is compiled, which makes
it easier to discover newly introduced errors. The test suites can be found in the
appendix.

Even though we have tested the system quite thoroughly using external tests,
we cannot exclude the possibility that there might still exist errors in the system.
To be absolutely certain that the system has no errors and works 100% correct,
we would have toprove the correctness of the system for every possible input.
However, this strategy is infeasible for anything, but very small programs.

We have not conducted a dedicated system test of the XML Store in its entirety.
However, we have made quite a lot of successful experiments of the XML Store
and have built an e-mail application on top of the XML Store. We are therefore
convinced that the XML Store system works.

107

Chapter 16

Experimental results

In order to evaluate the performance of the XML Store design we present four
sets of experiments. The first experiment concerns the performance of storage and
retrieval of documents. The second experiment focuses on the scalability of the
system. The third experiment seeks to evaluate the value-oriented storage strategy,
whereas the fourth experiment explore the efficiency of the XML Store API im-
plementation. Where relevant, we identify the causes for poor performance and
suggests strategies for boosting performance. Notice that we do not examine the
properties of the Chord protocol, since this has already been done by Stoica et al.
[42].

16.1 Performance of storage and retrieval

To determine the performance of storage and retrieval of documents, we set up
a network of50 XML Store peers distributed over five physical machines1. A
number of XML documents were saved in the XML Store network and then loaded.
The configuration of the XML documents vary over two parameters: The number
of nodes and the size of the character data nodes. As each node is saved separately
the depth of the tree does not affect the performance. The times listed are the
average of three separate experiments.

The XML Store employs a lazy loading strategy by using proxy nodes, that
only load the actual node if it is required. In the experiment we make sure the doc-
ument is completely loaded, by traversing the entire node structure and accessing
the content of each node.

Because of the storage strategy of the XML Store, where each node is saved
separately, we expect the performance of the load and save operation to be domi-
nated by the number of nodes in the XML documents and only to a lesser degree,
by the size of the nodes. Furthermore, we expect the load operation to be a small

1IBM compatible PCs. Equipped with AMD 1800 MHz CPU, 256 MB RAM, 40 GB IBM
DeskStar HD. Connected by 10 Mb ethernet. Running Windows XP Pro with Sun JVM 1.4.0 using
(default) 32 MB heap size.

108

16.1. PERFORMANCE OF STORAGE AND RETRIEVAL

constant factor faster than the save operation, since reading from disk is normally
faster than writing to disk. Note that the XML Store’s caching scheme does not in-
fluence these readings, as only situations where different peers load the same value
are affected – not situations where a single peer loads different values.

16.1.1 Influence of number of nodes

The three graphs represented in figure 16.1 illustrate the influence of the number
of nodes in an XML document, on the time it takes to save and load the XML
document. The XML documents used for testing, consist of1 to 10000 nodes,
each containing character data of either30, 300 or 3000 bytes.

Node size fixed at 30 bytes

0

100

200

300

400

500

600

700

800

900

0 500 1000 1500 2000 2500 3000

Number of nodes

T
im

e
(s

ec
)

Save

Load

Node size fixed at 300 bytes

0

100

200

300

400

500

600

700

800

900

0 500 1000 1500 2000 2500 3000

Number of nodes

T
im

e
(s

ec
)

Save

Load

Node size fixed at 3000 bytes

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200

Number of nodes

T
im

e
(s

ec
)

Save

Load

Figure 16.1:Influence of the number of nodes in an XML document on the time it takes
to save and load the document. The three graphs represent nodes containing character data
of either30, 300 or 3000 bytes. Results are the mean of three independent test runs. The
test runs did not exhibit large variations.

109

16.1. PERFORMANCE OF STORAGE AND RETRIEVAL

As expected, the graphs clearly show that the running time of both save and
load exhibits linear behaviour as the number of nodes increases. Furthermore, the
results show that, as expected, it is faster to load a document, than to save it. The
graphs also show that the time it takes to save and load a document tend to increase
as the size of the character data that a node contains, grows. In the following, the
influence of the size of character data on save/load times is examined.

16.1.2 Influence of the size of character data

The three graphs represented in figure 16.2 show the influence of the size of char-
acter data that a node contains, on the time it takes to save and load an XML
document. The test XML documents consist of a fixed number of nodes (either10,
100 or 1000 nodes) and each node contains between5 and12500 bytes of character
data.

The results of this experiment show that the size of character data has some
influence on the time taken to both save and load an XML document. The time
taken when saving and loading a document grows with the size of character data
in each of the three cases, although very slowly and at times somewhat randomly.
Especially in the experiments involving relatively few nodes (documents with 10
and 100 nodes), the time taken to save the smaller documents exhibits strange
behavior, being somewhat slow. We have no explanation for this phenomenon,
other than inaccurate measuring and unreliability caused by the relatively small
number of nodes. The experiment involving a large number of nodes does not
exhibit these deviations. Again, as expected, it is faster to load a document than to
save it.

16.1.3 Number of nodes vs. size of character data

To estimate the influence of the number of nodes contra the size of character data
on performance, we compare XML documents of approximately equal size, but
with a varying number of nodes and hence also varying sizes of character data (see
table 16.1).

As can be seen from table 16.1, there is a significant difference in the time
it takes to save XML documents of approximately the same size, but which vary
in the number of nodes. The more nodes, the longer it takes to save the XML
document. Since the documents are of roughly equal sizes, we consider the number
of nodes as the predominant factor regarding the time it takes to save an XML
document. This is understandable since each node is stored separately requiring
expensive network communication.

16.1.4 Network communication

The XML Store stores roughly between1−4 nodes per second which is inefficient
and unsatisfactory. The cause of this is first and foremost the implementation of

110

16.1. PERFORMANCE OF STORAGE AND RETRIEVAL

Number of nodes fixed at 10

0

1000

2000

3000

4000

5000

6000

0 2000 4000 6000 8000 10000 12000 14000

Size of character data (bytes)

T
im

e
(m

se
c)

Save

Load

Number of nodes fixed at 100

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000 12000 14000

Size of character data (bytes)

T
im

e
(s

ec
)

Save

Load

Number of nodes fixed at 1000

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200

Size of character data (bytes)

T
im

e
(s

ec
)

Save

Load

Figure 16.2:Influence of the size of character date (bytes) that nodes in an XML docu-
ment contain, on the time it takes to save and load the document. The test XML documents
consist of a fixed number of nodes – either10, 100 or 1000, corresponding to the three
graphs. Results are the mean of three independent test runs. The test runs did not exhibit
large variations.

111

16.2. SCALABILITY

Size of docu- Number Size of charac- Time
ment (kB) of nodes ter data (bytes) (sec)

493 100 5000 45
531 1000 500 429

743 250 3000 96
736 10000 30 2892

1041 350 3000 128
1179 3500 300 1006

1486 500 3000 201
1685 5000 300 1507

Table 16.1:Comparison of pairs of XML documents of approximately the same size,
with regard to number of nodes, size of character data and the time it takes to save the
documents.

network communication. As described in chapter 11 we use TCP-based communi-
cation and rely on threads to handle simultaneous requests to a server. It is a simple
solution that can handle the recursive nature of the Chord protocol, but it is very
expensive to handle each incoming request in a thread of its own.

The speed at which messages can be exchanged between peers in the system
constitutes an upper bound to the efficiency of the XML Store. If the network
communication is not improved it will be very hard to make the XML Store per-
form better. The network communication could be improved e.g. by using a thread
pool instead of creating new threads for each message. Another improvement is to
use connectionless UDP communication instead of TCP, but that necessitates that
network error handling is performed manually.

16.1.5 Asynchronous storage of nodes

Another possibility for substantial improvement is to exploit the system’s inherent
parallelism. As each node is an independent entity it can be saved independently
of the other nodes in the document. There is no need to await the confirmation of a
saving of a node, before saving the rest of the document. As the nodes comprising a
document with high probability are stored at different peers, the time spent waiting
for one peer in the system to complete a save operation could be put to better use
by saving several nodes simultaneously.

16.2 Scalability

The purpose of this experiment is to evaluate the scalability of the XML Store
system. In other words, to find out if the system becomes “hopelessly slow” when
many XML Store peers have joined the peer-to-peer system.

The experiment is performed by saving a number of identically structured and
sized, but nonetheless different, XML documents in a network with an increasing

112

16.3. MODIFICATION OF AN XML DOCUMENT

number of XML Stores. Each of the save operations is timed and the results can be
seen in figure 16.3.

Scalability test

0

10000

20000

30000

40000

50000

60000

0 20 40 60 80 100 120

Number of peers

T
im

e
(m

se
c)

Save

Load

Figure 16.3:The influence of the number of peers in the system on the time taken to save
a document. Results are the mean of three independent test runs. The test runs did not
exhibit large variations.

The results show that there are some variations in the results. It is thus difficult
to determine whether there is a correlation between the number of peers and the
time it takes to store an XML document.

Even though the experiment seems to suggest that the XML Store system will
remain scalable as more peers join the network, the number of peers is nowhere
near the magnitude that the system is supposed to handle in a real life situation.
Thus, we cannot from this experiment conclude that the XML Store system scales
gracefully when the number of peers increases, but rather have to rely on experi-
ments done by Dabek [2]. Dabek has carried out a number of experiments, regard-
ing the CFS system based on the Chord protocol, and these experiments show that
the CFS system is highly scalable.

16.3 Modification of an XML document

The purpose of this experiment is to evaluate the value-oriented storage strategy
when working with XML documents. Since the value-oriented data handling of the
XML Store allows maximal sharing of subdocuments, we expect that modifying
existing XML documents is considerably faster when working value-oriented, than
when updates are allowed.

The experiment is performed by first creating and saving a large XML docu-
ment (“The Tragedy of Hamlet, Prince of Denmark”, by Shakespeare) in the XML
Store. The document is then updated by either replacing, appending or removing
nodes and saved in the XML Store after each update.

Saving an XML document using conventional technologies, such as flat text
files, will result in a linear runtime of the save operation in the size of the document.
If instead an XML document is saved using a value-oriented approach, and thereby

113

16.4. REPRESENTATION OF CHILD LISTS

Operation Time (msec)
Save “Hamlet” 773300
Add character 917
Modify title 341
Add speech 822
Modify line 831
Delete (final) scene 306

Table 16.2:Results of saving an XML document repeatedly after modifying it in various
ways. Results are represented in milliseconds and are the mean of two independent test
runs. The test runs did not exhibit large variations.

taking full advantage of sharing, the time it takes to save a document will be linear
in the size of thechangesmade to the document.

Table 16.2 shows the results of saving the XML document “The Tragedy of
Hamlet, Prince of Denmark” repeatedly in the XML Store, after modifying it in
various ways. As can be seen from the results, it takes quite some time to save
the XML document the first time. Saving the document again, after modifying it
in different ways, is much faster, thereby demonstrating the advantages of using a
value-oriented approach when saving documents. Furthermore, the value-oriented
approach ensures that all versions of the document still exists in the XML Store.

16.4 Representation of child lists

The purpose of this experiment is to determine the efficiency of the child list im-
plementation, thereby obtaining some information on the size of XML documents
which can be handled in the XML Store. We experiment with two different child
list representations, namely arrays and red-black trees. The experiment was per-
formed by gradually inserting a number of nodes (5 to 100000 nodes) at random
places into a child list represented either as an array or as a red-black tree. The
results of the test can be seen in table 16.3.

From the results presented in table 16.3 it is obvious that the red-black repre-
sentation is faster than the array representation, when inserting a large number of
nodes. As can be seen, it takes approximately2 seconds to insert100000 nodes in
a child list represented as a red-black tree. Therefore, we find that our implementa-
tion of the red-black tree representation of children is suitable for processing very
large XML documents.

114

16.4. REPRESENTATION OF CHILD LISTS

Number of Time (msec) Time (msec)
nodes inserted using array using R/B tree

5 0 0

10 0 0

50 1 3

100 0 2

500 11 1

1000 41 5

1500 94 8

2000 164 11

5000 1071 37

10000 4518 116

15000 11421 228

25000 61106 405

50000 364993 923

75000 967788 1504

100000 1813750 2073

Table 16.3:Results of inserting a number of nodes randomly into a child list, represented
either as an array or a red-black tree. Results are represented in milliseconds and are the
mean of ten test runs. The test runs did not exhibit large variations.

115

Chapter 17

E-mail application

This chapter describes the design of a distributed e-mail system built on top of the
XML Store framework. The purposes of building such a system are:

• Evaluation of the applicability of the API. Is the proposed API useful for
building actual systems? Does it have the necessary methods and is it easy
to work with?

• Is the XML Store system suitable for building an application like the e-mail
system?

Notice that the purpose of the e-mail application is not to examine the general
performance of the XML Store. This is done in chapter 16.

17.1 Description of the e-mail system

The e-mail application is kept very simple. It does not in any way implement the
SMTP protocol, but simulates exchange of short messages using the XML Store
framework. The main window of the application is shown in figure 17.1. The
application has the following operations: Send, reply, reply all, forward and delete
e-mail.

The basic behaviour of the application is very similar to existing e-mail appli-
cations such asNetscape MessengerandMicrosoft Outlook. The left frame of the
figure 17.1 is the folder frame, which contains the inbox and sent folder. The upper
right folder is the e-mail folder and the lower left is the message folder. When the
user selects a folder in the folder frame, the content of the folder is shown in the
e-mail frame. When the user then selects an e-mail, the contents of the e-mail is
shown in the message frame.

Before the user can use the e-mail system, she needs to press theConnect
button, which makes the underlying XML Store try to join the XML Store network.
Once the XML Store has successfully joined the network, the user is able to send
and receive e-mails.

116

17.1. DESCRIPTION OF THE E-MAIL SYSTEM

Figure 17.1:The main window of the e-mail application.

When the user wishes to send or reply to a e-mail, the e-mail application opens
the e-mail window, which is shown in figure 17.2. In this window the user needs
to specify the receiver, subject and message of the e-mail. Multiple recipients are
separated by commas.

Figure 17.2:The e-mail window of the e-mail application.

Structure of e-mail folders

The foldersinbox andsent are contained in a single XML documentmail folders ,
which is structured the following way:

<mail_folders>
<inbox>

<email>
<date>

23-04-2002
</date>
<to>

<email_address>baumann@it.edu</email_address>
<email_address>thorn@it.edu</email_address>

</to>
<sender>

<email_address>fenne@it.edu</email_address>
</sender>
<subject>

117

17.1. DESCRIPTION OF THE E-MAIL SYSTEM

Meeting!
</subject>
<message>

Hi Tine and Anders!
We have a meeting at twelve o’clock tomorrow.

</message>
</email>
<email>

<date>
24-04-2002

</date>
<to>

<email_address>tine@it.edu</email_address>
<email_address>fenne@it.edu</email_address>

</to>
<sender>

<email_address>baumann@it.edu</email_address>
</sender>
<subject>

New meeting!!
</subject>
<message>

Hi Tine and Mikkel!
We have a new meeting at eleven o’clock Friday.

</message>
</email>

</inbox>
<sent>

<email>
<date>

23-04-2002
</date>
<to>

<email_address>baumann@it.edu</email_address>
<email_address>fenne@it.edu</email_address>

</to>
<sender>

<email_address>thorn@it.edu</email_address>
</sender>
<subject>

Re: Meeting!
</subject>
<message>

I will be there!!

On the 23-04-2002 fenne@it.edu wrote:
Hi Tine and Anders!
We have a meeting at twelve o’clock tomorrow.

</message>
</email>

</sent>
</mail_folders>

Delivery of e-mails

The e-mail application makes use of the name service when an e-mail is delivered.
The name service has an entry for each address (e.g. “thorn@it.edu”) in the system
and each address points to themail folders document of the owner of the address.
Sending an e-mail is accomplished by the following steps (the steps are illustrated

118

17.1. DESCRIPTION OF THE E-MAIL SYSTEM

in figure 17.3). The numbers in the figure corresponds to the steps below.

1. The name service is used to look up the value reference of the recipient’s
mail folders document.

2. The XML Store is used to load themail folders document.

3. The e-mail is appended to the recipient’sinbox .

4. The newmail folders document is saved in the XML Store.

5. The name service is updated, so the receiver’s address now points to the
updatedmail folders document.

In a similar way, the e-mail is inserted into thesent folder of the sender.

EMAIL APPLICATION

NAME SERVICE

XML STORE

1. Value reference to the recipient's
mail_folders document.

2. Load mail_folders
document.

New_Mail_Folders = append(old_Mail_Folders, "inbox", new_Mail);

3. Append the new email to the recipient’s inbox.

4. Save the new mail_folders in the XML Store.

5. Update nameservice.

Figure 17.3:Delivery of an e-mail.

To keep the system as simple as possible, we have not implemented any se-
curity. Furthermore, we have chosen to ignore features like attachments, address
book, unread messages and search facilities. These are all features, that could
quite easily be implemented. For instance, unread messages can be implemented
by maintaining a persistent list of value references of all the unread e-mails, and
by removing a value reference from the list when the e-mail it refers to is read by
the user.

119

17.2. EVALUATION OF API

17.2 Evaluation of API

During the implementation of the mail application we did not find any serious
errors or deficiencies in the proposed API. We felt we had the necessary operations
at our disposal, and the API was on the whole easy to work with. However, we did
find some flaws and possible improvements.

Accessing the contents of a node is a frequently needed operation when work-
ing with XML documents. We found that this operation was rather awkward de-
signed. For instance, to extract the actual e-mail address from anemail address

element we have to write:

String address = emailAddress.getChildNodes().get(0).getValue();

To avoid this rather awkward series of method calls we propose a new method
getChildCharData(int index) which is a shortcut for the above code. Using the
new method we could write:

String address = emailAddress.getChildCharData(0);

Note that in the method an exception should be thrown if the child node at
positionindex is not a character data node.

Another awkward feature of the API is the creation of documents. We propose
a new method that takes a string with XML syntax as input, parses the input string
and creates the relevant nodes. Instead of writing:

Node ch1 = createCharData("fenne@it-c.dk");
Node email = createElement("email_address", new node[] {ch1});
Node sender = createElement("sender", new node[] {email});

We could then write:

Node personae = createDocument("<sender><email_address>" +
"fenne@it-c.dk</email_address></sender>");

The question of type safety was another issue we came across when developing
the mail application. For instance, we have no way of knowing if the<sender>

element actually contains an<email address> element or if the<email address>

element contains an e-mail address. Therefore, an obvious improvement of the
mail system would be to use a an XML Schema, which supports specification of
data types, to validate the incoming XML documents. A more radical change to the
XML Store would be a reflexive framework, that is able to automatically generate a
class structure based on the element tags of an XML document. Java Architecture
for XML Binding (JAXB) is an example of such a framework [68]. JAXB compiles
an XML schema into one or more Java classes and the generated classes handle all
the details of XML parsing and formatting. Similarly, the generated classes ensure
that the constraints expressed in the schema are enforced in the resulting methods
and Java data types. When using an architecture like JAXB our class structure of

120

17.3. EVALUATION OF SUITABILITY

Node, Element andCharData is thus replaced by a class structure custom-made
to themailfolders XML document. Themail folders document is then repre-
sented by an instance of theMailFolders class which has two instances,inbox

andsent of theFolder class, each containing a list of instances of theEmail class
etc. With this class structure we can easily retrieve the contents of an e-mail by
accessing the fields of the e-mail object:

String email = email.sender.emailAddress;

The advantages of the described approach comes at the price of having to con-
form to a schema, that even has to be known at compile time. When you have to
describe a schema you lose the generality and flexibility of semistructured data,
and cannot handle any documents that do not conform to this schema.

17.3 Evaluation of suitability

Even though the e-mail application is very simple, the design and implementation
still shows that the properties of the XML Store make it suitable for being the
underlying framework of a distributed system like an e-mail application. The ad-
vantages of using the XML Store for this kind of application is high scalability as
well as reduction of disk storage, which is due to sharing of subdocuments. Con-
sider an example, where a user forwards an e-mail to200 users. An ordinary e-mail
server will produce200 copies of the e-mail and put it in each of the200 users’
mailboxes. Some of the users will then forward the e-mail, other will just store it
in a folder and yet others will never even read it. The result is several copies of
the exact same e-mail. This redundancy is avoided in the XML Store, because the
XML Store will only save the e-mail once and all users will then get a reference to
this single e-mail.

Obviously, security is an issue we need to consider if the mail application is
to be used in a realistic environment. As described in chapter 12 we have come
up with a solution that makes it possible to encrypt values and still maintain shar-
ing. Thereby, a user is prevented from reading another user’s e-mail. However,
the possibility of a malicious user deleting another user’s e-mails is still a secu-
rity problem, since the sender of an e-mail has access to the entiremail folders

document of the receiver. This problem can be solved if we customise the name
service, so an address in the name service no longer contains a value reference to
the mail folders document of the owner of the address, but instead contains a
value reference to a temporary inbox of the owner of the address. This way, the
sender of an e-mail has access only to the temporary inbox, and hence cannot mod-
ify the real inbox of the receiver. When a user wants to read her inbox, she uses
the name service to lookup the address of the inbox. The name service will then
authenticate the user and append the e-mails in the temporary inbox to the real in-
box. If the e-mail application should be realistic, then we also need to modify and
optimise the design of the name service, so that it no longer constitutes a single

121

17.3. EVALUATION OF SUITABILITY

point-of-failure.

To summarise, the design and implementation of the mail application has shown
that the proposed API is applicable and easy to use, though it has some awkward
methods. It has also shown that the XML Store is suitable for being the underlying
framework of applications like the distributed mail system.

122

Chapter 18

Conclusion

In this thesis, we have presented the XML Store system: A self-organising, highly
scalable distributed system for storing XML documents in a value-oriented manner,
based on the Chord routing and location scheme.

Distributed storage The XML Store is based on the Chord routing and loca-
tion protocol. We use the Chord protocol as a service that translates a location-
independent value reference to a network route by which the value can be found.

By building on the Chord protocol, we show that it is possible to design and
implement an efficient, value-oriented XML Store which is decentralised, self-
organising, scalable, fault tolerant and provides high availability of data. We also
give a simple, working implementation of the Chord protocol in Java, clarifying the
workings of the various pseudo-code fragments presented in the articles on Chord.

We propose an extension to the Chord protocol, inspired by Clarke et al. [17],
that allows the detection of collisions between the cryptographic content hashes
used to identify data.

Conventional encryption prevents sharing of data, as each user’s data is en-
crypted with the user’s private key. We present theContent Hash Encryptiontech-
nique inspired by theconvergent encryptiontechnique [67]. This technique secures
data from being read by unauthorised users, while still preserving sharing of iden-
tical data between different users.

In the prototype implementation of the XML Store network communication is
implemented by a synchronous request-reply protocol, where each remote method
invocation is handled by a separate thread. This solution is obviously insufficient,
and a asynchronous request-reply protocol with fault tolerance should be intro-
duced to the system.

API We present a value-oriented API for processing XML documents. The API
represents the XML document as an object structure, resembling DOM, except
that all aspects of the API are value-oriented – any modifications to a document
will result in a new document being built, leaving the former document unaltered.

123

The API is arguably as applicable and versatile as DOM, and gives the ap-
plication programmer a full range of operations for reading and modifying XML
documents. The versatility of the API is demonstrated by implementing an e-mail
system, modelling the user’s folders and messages as XML documents.

We demonstrate how the core operations of the API are implemented effi-
ciently, making processing of large XML documents feasible. By representing
child lists as balanced trees, we obtain anO(log N) run-time for accessing chil-
dren and modifying the list.

The API still needs some derived utility operations and short cuts, making com-
mon tasks easy for the application programmer. The core operations, however, are
sufficient.

Processing XML documents When storing documents in the XML Store, the
documents are split up according to their inherent tree structure, and each node
is stored separately. Since we work value-oriented, the storage strategy makes
sharing of identical subdocuments possible.

Experiments show that due to the extensive sharing of subdocuments, modifi-
cation of stored documents is extremely efficient compared to flat text files. Only
the changed parts of a document need to be stored – not the entire document as
in the conventional serialisation of XML documents. The tree structured storage
format furthermore allows us to access parts of the document without having to
load and parse the entire document.

However, the storage strategy chosen in the XML Store is far from optimal.
Our experiments show that the number of nodes of an XML document is of greater
importance when storing a document than the size of the nodes. Documents stored
using our storage strategy, are typically split up in too many small parts, each
requiring expensive network operations. We propose an alternate storage strategy
that generates fewer and larger blocks, presumably making storage of documents
faster, but also reducing the amount of sharing. The performance of the alternate
storage strategy has yet to be determined.

It seems plausible that the XML Store has potential for being very efficient with
a different storage strategy and network communication implementation, since
CFS, which is also based on Chord, achieves speeds competitive with FTP.

We have shown how a peer-to-peer system designed for storing XML documents
can be efficiently constructed to support dynamic networks by using the Chord
protocol for routing and location of peers.

Due to our value-oriented approach, we are able to present some simple solu-
tions to usually complex problems regarding distributed systems, such as transac-
tion handling, caching- and replication management.

We present an approach to processing and storing XML documents that in
many ways is superior compared to traditional technologies such as SAX and
DOM.

124

The techniques presented in the thesis have the potential to enable many inter-
esting developments in the area of distributed systems as well as XML processing.

125

Chapter 19

Future work

This section will describe some of the aspects of the XML Store that were beyond
the scope of this project, but will be important to consider in future work with the
XML Store project. The present work may be improved and extended in various
ways:

Name service The name service presented in the XML Store is clearly inade-
quate. Efforts should be concentrated in two areas: First of all, by extending the
functionality of the name service in various ways, such as adding more advanced
management of names. Secondly, by making the name service distributed, so it no
longer constitutes a single point of failure. Whether the Chord protocol is useful
for providing a decentralised name service has yet to be explored.

Distributed garbage collection The XML Store system only allows insertion of
data – never deletion. This of course means that the store will gradually be filled
up, possibly with data that is no longer in use. Garbage collection of some sort is
required, so values no longer in use can be removed. This is somewhat complicated
in a distributed environment, but it has been done before. The CFS system for
instance [2], adopts the simple approach of using leases to keep data alive. If a lease
has not been renewed for a given period of time, the data is considered unused, and
is deleted. More advanced distributed garbage collection schemes require research
though.

Network communication Previous work by Dabek [2] has made it clear that an
effective flow control protocol for XML Store traffic is necessary. UDP transport
over the wide area network saves resources and avoids the expense of setting up
connections, but instead sacrifices the flow control properties that TCP provides.
More effort should also be put into making the network communication in the XML
Store asynchronous.

126

Security A complete defense against malicious nodes has yet to be devised. Sto-
ica et al. [43] are working on making the Chord protocol more secure to malicious
attacks.

Search facility The XML Store system could benefit from a search facility, that
allows a user to retrieve a list of all documents containing one or more keywords
specified by the user or to perform database style queries.

One way to provide the “keyword” search would be to adopt an existing cen-
tralised search engine. A more ambitious approach would be to store the required
index files using the XML Store itself. Stoica et al. [43] are currently working on
developing a keyword search facility for the CFS system.

XPath and XQuery are W3C standards for expressing database style queries.
With XPath, a set of nodes can be selected based on a regular path expression.
However, this operation can be very expensive to perform if we are dealing with
a large XML document and if the entire XML tree has to be scanned to retrieve
the relevant nodes. To reduce the portion of data that has to be scanned, index
schemes have been proposed. Current research on indexes for semi-structured data
includes the projects on Dataguides [69], T-indexes [70] and TOXIN [26]. How-
ever, more research in the area of distributed indexes is still needed, especially
regarding whether advantages can be gained from the value oriented approach: can
we exploit that data is never updated when building an index, and when perform-
ing updates, can an index be generated incrementally from the index of a previous
document?

127

Bibliography

[1] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area
cooperative storage with CFS.SOSP ’01, October 2001.

[2] F. Dabek. A cooperative file system. Master’s thesis, Massachusetts Institute
of Technology (MIT), September 2001.

[3] A. Rowstron and P. Druschel. Storage management and caching in PAST, a
large-scale persistent peer-to-peer storage utility. InProc. ACM SOSP ’01,
2001.

[4] P. Druschel and A. Rowstron. PAST: A large-scale persistent peer-to-peer
storage utility. InProc. HOTOS Conf., 2001.

[5] G. Coulouris, J. Dollimore, and T. Kindberg.Distributed Systems - Concepts
and Design. Addison-Wesley, 3rd edition, 2001.

[6] S. Abiteboul. Querying semi-structured data. InICDT, pages 1–18, 1997.

[7] D. Suciu. An overview of semistructured data.SIGACT News, 29(4):28–38,
December 1998.

[8] L. C. Paulson.ML for the working programmer. Cambridge University Press,
2nd. edition, 1996.

[9] F. Henglein. Desiderata for an applicative persistent store manageer (XML
Store).memo, 2001.

[10] Jie Wu.Distributed System Design. CRC Press, 1st edition, 1999.

[11] David L. Mills. Simple network time protocol (sntp) version 4 for ipv4, ipv6
and osi. http://www.ietf.org/rfc/rfc2030.txt?number=2030.

[12] J. M. Crichlow.The essence of distributed systems. Prentice-Hall, 2000.

[13] R. Elmasri and S. B. Navathe.Fundamentals of database systems. Addison-
Wesley, third edition, 2000.

[14] D. Bricklin. Thoughts on peer-to-peer. http://www.bricklin.com/p2p.htm,
August 2000.

128

BIBLIOGRAPHY

[15] N. Minar. Distributed systems topologies: Part 1.
http://www.openp2p.com/lpt/a//p2p/2001/12/14/topologiesone.html, De-
cember 2001.

[16] N. Krishnan. The JXTA solution to P2P.
http://www.javaworld.com/javaworld/jw-10-2001/jw-jxtap.html, Octo-
ber 2001.

[17] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed
anonymous information storage and retrieval system. InProceedings of the
Workshop on Design Issues in Anonymity and Unobservability, pages 46–66,
2000.

[18] The Gnutella protocol specification v0.4. http://www.gnutella.co.uk/library/-
pdf/gnutellaprotocol0.4.pdf.

[19] N. Minar. Distributed systems topologies: Part 2.
http://www.openp2p.com/lpt/a//p2p/2002/01/08/p2ptopologiespt2.html,
August 2002.

[20] M. Doernhoefer. A technology without peer(-to-peer).
http://www.acm.org/sigsoft/SEN/surf2604.html, July 2001.

[21] F. Dabek, E. Brunskill, M. F. Kaashoek, D. Karger, R. Morris, I. Stoica,
and H. Balakrishan. Building peer-to-peer systems with Chord, a distributed
lookup service. InProceedings of the 8th Workshop on Hot Topics in Oper-
ating Systems (HotOS-VIII), pages 81–86, 2001.

[22] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location
and routing for large-scale peer-to-peer systems. InProc. IFIP/ACM Middle-
ware 2001, 2001.

[23] B. McLaughlin.Java and XML. O’Reilly, 2000.

[24] P. Buneman. Semistructured data. InProceedings of the 16th ACM Sympo-
sium on Principles of Database Systems, pages 117–121, 1997.

[25] S. Abiteboul, P. Buneman, and D. Suciu.Data on the web - from relatons to
semistructured data and XML. Morgan Kaufmann, 2000.

[26] F. Rizzolo. ToXin: An indexing scheme for XML data. Master’s thesis,
Univerity of Toronto, 2001.

[27] E. R. Harold and W. S. Means.XML in a nutshell: A desktop quick reference.
O’Reilly, 2001.

[28] D. Suciu. Semistructured data and XML. InIn Proceedings of the Seventh
Conference on Knowledge Management, 1998.

129

BIBLIOGRAPHY

[29] http://www.xml.com/pub/a/1999/11/sml/index.html, 1999.

[30] http://www.brics.dk/ amoeller/xml/xml/sgml2sml.html.

[31] D. Park. http://www.docuverse.com/smldev/minxmlspec.html, November
2000.

[32] R. Hoque.XML for real programmers. Morgan Kaufmann, 2000.

[33] J. Clark and S. DeRose. XML path language (XPath).
http://www.w3.org/TR/xpath, November 1999.

[34] J. Clark. XSL transformations (XSLT). http://www.w3.org/TR/xslt, Novem-
ber 1999.

[35] S. DeRose, E. Maler, and R. Daniel Jr. XML Pointer Language (XPointer)
version 1.0 (work in progress). http://www.w3.org/TR/xptr, January 2001.

[36] Napster. http://www.napster.com/.

[37] Napster protocol specification. http://opennap.sourceforge.net/napster.txt,
April 2000.

[38] D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weather-
spoon, W. Weimer, W. Wells, B. Zhao, and J. Kubiatowicz. Oceanstore: An
extremely wide-area storage system. Technical Report UCB/CSD-00-1102,
Computer Science Division, U. C. Berkeley, May 1999.

[39] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
OceanStore: An architecture for global-scale persistent storage. InProceed-
ings of ASPLOS 2000, November 2000.

[40] M. Ripeanu and I. Foster. Mapping the Gnutella network: Macroscopic prop-
erties of large-scale peer-to-peer systems. Electronic Proceedings for the 1st
International Workshop on Peer-to-Peer Systems (IPTPS ’02), March 2002.

[41] H. Zhang, A. Goel, and R. Govindan. Using the small-world model to im-
prove Freenet performance. InProceedings of IEEE, Infocom, 2002.

[42] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishan. Chord:
A scalable peer-to-peer lookup service for internet applications.ACM SIG-
COMM, San Deigo, CA, 2001.

[43] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. F. Kaashoek, F. Dabek,
and H. Balakrishan. Chord: A scalable peer-to-peer lookup service for inter-
net applications. LCS Tech Report, Massachusetts Institute of Technology
(MIT), January 2002.

130

BIBLIOGRAPHY

[44] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishan. Chord:
A scalable peer-to-peer lookup service for internet applications. Unpublished.

[45] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies
of replicated objects in a distributed environment. InACM Symposium on
Parallel Algorithms and Architectures, pages 311–320, 1997.

[46] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable
content-addressable network. InProc. ACM SIGCOMM ’01, 2001.

[47] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An infrastructure for
fault-tolerant wide-area location and routing. Technical Report UCB/CSD-
01-1141, Computer Science Division, U. C. Berkeley, April 2001.

[48] K. Hildrum, S. Kubiatowicz, J. Rao, and B. Zhao. Distributed data location
in a dynamic environment. Technical Report UCB/CSD-02-1178, Computer
Science Division, U. C. Berkeley, April 2002.

[49] OpenNap: Open source Napster server. http://opennap.sourceforge.net/.

[50] Software AG. Tamino XML Server - White paper.
http://www.softwareag.com/tamino/download/tamino.pdf, 11 2001.

[51] Apache. Xindice. http://xml.apache.org/xindice.

[52] Li Gong. Project JXTA: A technology overview.
http://www.jxta.org/project/www/white-papers.html, 2002.

[53] A. Le Hors and P. Le Hegaret. Document object model (dom) level 2
core specification. http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-
20001113/, November 2000.

[54] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction to algorithms.
MIT Press, 1st edition, 1990.

[55] C. Okasaki. Functional pearls: Red-black trees in a functional setting.J.
Functional Programming, 9(4):471–477, July 1999.

[56] S. Kahrs. Red-black trees in a functional setting.
http://www.cs.ukc.ac.uk/people/staff/smk/, 2000.

[57] D. Karger, E. Lehman, T. Leighton, M. Levine, D. M. Lewin, and R. Pani-
grahy. Consistent hashing and random trees: Distributed caching protocols
for relieving hot spots on the World Wide Web. InProceedings of the 29th
Annual ACM Symposium on Theory of Computing, pages 654–663, 1997.

[58] D. M. Lewin. Consistent hashing and random trees: Algorithms for caching
in distributed networks. Master’s thesis, Massachusetts Institute of Technol-
ogy (MIT), May 1998.

131

BIBLIOGRAPHY

[59] http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?cache.

[60] K. Cheng and Y. Kambayashi. LRU-SP: A size-adjusted and popularity-
aware LRU replacement algorithm for Web caching. InProceedings of the
24th IEEE Computer Society International Computer Software and Appli-
cations Conference (Compsac’2000), pages 48–53. IEEE Computer Society,
October 2000.

[61] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim.
LRFU (least recently/frequently used) replacement policy: A spectrum of
block replacement policies. citeseer.nj.nec.com/article/lee96lrfu.html, 1996.

[62] J. Gwertzman and M. I. Seltzer. World Wide Web cache consistency. In
USENIX Annual Technical Conference, pages 141–152, 1996.

[63] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.Handbook of applied
chryptography. CRC Press, 1996.

[64] M. Rosenblum and J. K. Ousterhout. The design and implementation of a log-
structured file system.ACM Transactions on Computer Systems, 10(1):26–
52, 1992.

[65] B. R. Preiss. Data structures and algorithms with object-oriented design
patterns in Java. John Wiley and Sons, Inc., 2000.

[66] J. T. Pedersen and K. B. Pedersen. A distributed XML Store. Master’s thesis,
IT-University, Copenhagen, August 2002.

[67] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Feasibility of a server-
less distributed file system deployed on an existing set of desktop PCs. In
Proceedings of the international conference on measurement and modeling
of computer systems, pages 34–43, 2000.

[68] JavaTM architecture for XML binding (JAXB).
http://java.sun.com/xml/jaxb/.

[69] R. Goldman and J. Widom. DataGuides: Enabling query formulation and
optimization in semistructured databases. InProceedings of the 23th VLDB
Conference, 1997.

[70] T. Milo and D. Suciu. Index structures for path expressions.Lecture Notes in
Computer Science, 1540:277–295, 1999.

132

